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Basic Notions




DEFINITIONS

m Agent (Control Systems view): A system with the following proprieties:

1. Its behavior can be controlled.
2. It can interact with other agents.

m Multi-Agent System (Control Systems view): A set of agents that
interact with one-other (generally to solve a common task).




INTERACTIONS - COMMUNICATION NETWORK

m Interactions: The state of an agent is influenced by the states of some
other agents.

m A; - Agent
m C; - Controller

A, A A,
] il il
C, C, C,
il ! il
[ Communication Network ]




INTERACTIONS - PHYSICAL COUPLINGS

[ Physical Couplings ]
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INTERACTIONS

[ Physical Couplings ]
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COOPERATIVE CONTROL

m Cooperation: a process during which a group of agents work together
to achieve a common goal.

m Cooperation needs interaction.

m Question: Which information is necessary for each agent to achieve the
common goal?




Consensus Problem




MOTIVATING EXAMPLE - ROBOT SWARM

m Consider a robotic agent that moves in a plane and its velocity can be
set along the two axis.

X = Uy

}":Uy

m u, and uy: the velocities along the two axis

m Assume that an agent can detect the other agents in its proximity

(neighbors) using some kind of obstacle detector with finite range (e.g.
LIDAR)




MOTIVATING EXAMPLE - ROBOT SWARM

m Consider a swarm of 6 robots equipped with such sensors.

m The interactions in this swarm are limited by the range of the sensors.
Based on this, we can define the proximity graph of the group.




UNDIRECTED GRAPHS

m Undirected graphs: G = (V, &)

m V={1,2,...n} - set of vertices.

mECV xV - set of edges.

m If the vertices i and j are connected, they are called to be adjacent.

%




UNDIRECTED GRAPHS

m If the vertices / and j are connected, they are called to be adjacent.
m Neighbor set of vertex i (N;): The set of vertices that are adjacent to i
m Path: A sequence of adjacent vertices.

m Strongly Connected graph: There is a path from any vertex to any
other vertex.

m If a graph is not strongly connected it can be decomposed into strongly
connected components (subgraphs).



MATRICES ASSOCIATED TO (GRAPHS

m Degree matrix: D = (dj) = diag (dimN\)
1, if i and j adjacent,

m Adjacency matrix: A= (a;) = { 0. otherwise

1 0 0 0 0 O 01 0 0 0O
03 000 O 1 01 1 00
D— 00 2 00O A 01 01 00
00 0 2 0O 01 1 0 0O
0 00 0 1 O 0 0 00 01
00 0 0 01 000010




LAPLACIAN MATRIX OF A GRAPH

m Laplacian matrix: L=D — A
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EIGENVALUES OF LAPLACIAN MATRIX

m The row sum and column sum are zero, i.e. L1 =0, 17L=0".
m [ has at least one zero eigenvalue and the corresponding eigenvector is
1.
m L=L7 ie all the eigenvalues are real.
m All the eigenvalues are real, by Greshgorin's theorem, and
M=0< ) <...<
m The Laplacian of an undirected graph has as many 0 eigenvalues as
many strongly connected component the graph has.
m If the graph is strongly connected, rankL = n— 1.
1 -1 0 0o 0 0
-1 3 -1 -1 0 0
L_L10_0712—100
| 0 Ly | 0o -1 -1 2 0 O
0o 0 0 0 1 -1
0o 0 0 0 -1 1




CONSENSUS PROBLEM

m Let a MAS consisting of n agents as: X; = u;, x,(0) = xp, i=1,...,n.
m The MAS is said to reach consensus if Vxj, i=1,...,n.
lim; s ooxq (8) = limy s ooxo(t) = ... = limyooxs(t) =%, XER




EXAMPLE: RENDEZVOUS PROBLEM

X, X,

‘

m Agent 1 with control: X3 = uy, x1(0) = x10, U1 = x2 — x1

2

N

| Agent 2 with control: 5(2 = Uy, XQ(O) = X920, U] = X1 — X2

m The controlled multi-robot system:
5(1 o 1 —1 X1
)-(2 - —1 1 X2
—_———
m Eigenvalues are Ay =0, Ay = —2.



EXAMPLE: RENDEZVOUS PROBLEM

Simulations:
| X10:1, up = Xo — X1
| X20:2, up = X1 — X9

2[C I =
19 —
18 — -
x2 L _

16 — —

15 = | | 1 I 1 =

x




CONSENSUS PrROTOCOL

m Let the control (consensus protocol) for each agent u; =3 \- (X — X))

m The control directs the trajectory of the agent toward the centroid of
the neighboring agents.

m The global model of the MAS with consensus protocol:

x = —Lx, x(0) =xg

Xx=(x; ... x)"




ExXAMPLE: CONSENSUS PROTOCOL

m Control and global MAS model:

up = Xo — X1 5(1 1 —1 0
Us = x1 + x3 + x4 — 3xo Xa -1 3 —1
us :X2+X472X2 5(3 o 0 -1 2
Uy = X3 + X0 — 2x4 Xy - 0 -1 -1
Us = Xg — X5 5(5 0 0 0
Ug — X5 — Xg 5(6 0 0 0

0
—1
-1

2

0

0

= O O O O

=1

o O O o

X1
X2
X3
Xy
X5
X6



ExXAMPLE: CONSENSUS PROTOCOL

meig(l)=[013402]




ANALYSIS OF CONSENSUS PROTOCOL

m Question: Does the consensus protocol solves the consensus problem?
If yes, under which condition?

m Analyze the system
x = —Lx, x(0) = x

m The general solution of it, assuming different non-zero eigenvalues:
x(t) = cre Mty 4+ e 2tvy + ... 4 cre My,
m Here ¢; are constants and v; is the eigenvector corresponding to A;:

LV,' = /\,'V,'




ANALYSIS OF CONSENSUS PROTOCOL

m Let the bock diagonal hypermatrix with two Laplace matrices in the

diagonal:
1 -1 0 0 0 O
-1 3 -1 -1 0 0
| Li O ’ S, o -1 2 -1 0 O
IL= { o L } Example : L = 0 -1 -1 2 0 0
0O 0 0 O 1 -1
o o0 o0 0 -1 1

m The eigenvalues of L consist of eigenvalues of L; and eigenvalues of L.

m L, has one zero eigenvalue (A\1; = 0) and the corresponding eigenvector
of Lis
vi1=[1"70"]7 Example:v;; =[111100]"

m L, has one zero eigenvalue (A3 = 0) and the corresponding eigenvector
of Lis
vor =[07 17]7 Example: vy =[000011]7



ANALYSIS OF CONSENSUS PROTOCOL

m The general solution x = —Lx, where L = diag(L; L»):

—A11t Aint —A21t Agn1t

X(t) =Cy1€ Vii+...+Cim€e Vinl+C21€ vVoi+...+Con€e Von2

A1 =0, A; >0, Ao1 =0, A\y; >0, i> 2. Hence:

. 1 0 1l
lims,00x(t) = €11 < 0 ) + co1 ( 1 ) = ( cil )




CONSENSUS VALUE

m Recall the global model of MAS
x = —Lx, x(0) = x
m The scalar
z=1"x

is an invariant quantity along the dynamics of MAS, i.e.
z(t) = 2(ta), Vty, to.
Proof: z=1"%x= —1"Lx = 0.

m As a consequence:

2(0) = 1TX(0) = limt_wOlTx(t) =z,




CONSENSUS VALUE

m Recall the steady state of the general solution of global MAS model:
x; = —Lix1, x1(0) = X1, lim;00%1 () = €111

5(2 = —L2X2, XQ(O) = X2, limt_)ocx2(t) = C21].
m Due to the invariant proprieties:

1TX1 (0) = limtﬁoclTxl(t) =Cc1m = C1= le,-(O)/nl
=il

n2
1TX2 (O) = limt_)oolTXQ(t) = Cg1N2 = Co1 = ZXQ[(O)/”Q
i=1

m The consensus value:

na
1inlt~>oox1(t) = = Xl,( )1
n
na
1in1t~>oox2(t) = == XQI( )1
ng



EXAMPLE: RENDEZVOUS PROBLEM

i) ‘ @1
m The global MAS model:
).(1 . 1 -1 X1
)'(2 - —1 1 X2
m The space of the steady states:

X17X2:0

X‘\

XX,=0,




CONSENSUS PROBLEM

m The consensus protocol solves the consensus problem of a MAS
if the underlying graph of the MAS is strongly connected. The
consensus value is:

27:1 xi(0)

n

x|




CONSENSUS EXAMPLE




Formation Control




WEAK FORMATION CONTROL PROBLEM

m Let a MAS consisting of n agents as: x; = u;, x,(0) = xp, i=1,...,n.

m Develop the control (u;) such that lim,_,|xi(t) — x;(t)| = d; Vi,
i=1,...,n, where §; > 0.

m Remark: The structure of the graph could impose restrictions on dj;.




WEAK FORMATION CONTROL

m §;; > 0 is feasible if Ip;, pj such that 0;; = p; — p; Vi, .

m Let
€ = Xi — Pi

m Weak formation control protocol

uj = Z(ej — e,-)

JEN;




WEAK FORMATION CONTROL

m The weak formation control protocol solves the consensus problem of a
MAS if the underlying graph of the MAS is strongly connected.

m As X; = &; the transformed model of the global MAS is
e=—le

m In the same way as in the case of the consensus problem the weak
formation control protocol ensures that

> €i(0)

lim; o€ () = limy,ooea(t) = ... = lime,0e,(t) =€ €=
n

i.e.

lim; oo xi(t) = p;i + &,
fimi o) — (0)| = i — pil = 8 Vi



ExaMPLE: 2DOF WEAK FORMATION CONTROL

Xi = Uix

Yi = Uiy

y
X



ExaMPLE: 2DOF WEAK FORMATION CONTROL
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8
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CONSENSUS OVER DIRECTED GRAPHS

®o

m Assume a number of robotic agents equipped with such obstacle
localization sensor which ranges are limited.

m With such sensors the agent i may influence the behavior of agent j but
it could not be true vice-versa.




DIRECTED GRAPHS

m Directed graphs: G = (V, &)

m V={1,2,...n} - set of vertices.

m & CV XV - set of directed edges.

m Adjacent vertices: j and 7 are adjacent if there is a directed edge from j
to i (j— ).

m Nj; input neighborhood set of vertex i Vertex j € Nj; if j and i are

adjacent (j — i)

m No; output neighborhood set of vertex i: Vertex j € No; if i and j are

adjacent (i — )



SPANNING TREE

m A directed path is a sequence of adjacent vertices
(i1 —>Ig—)—)lm)

m G is said to posses a spanning tree if there exists a vertex r (root) such
that there exists a directed path from r to any other vertex j.




LAPLACIAN OF A DIRECTED GRAPH

1 -1 0 0 0 0
0 1 0O -1 0 0
[ — 0 -1 1 0 0 0
0o 0 -1 2 -1 0
0o 0 0 -1 1 O
0o 0 0 0 -1 1




LAPLACIAN OF A DIRECTED GRAPH

1 -1 0 0 0 0
0 1 0 -1 0 0
[ — 0 -1 1 0 0 O
0 0 -1 2 -1 0
0 0 0 -1 1 0
0 0 0 0 -1 1

m The row sum of L is zero.
m It has a zero eigenvalue (A\; = 0) and the corresponding right
eigenvector is 1:
[1=0
m The column sum of L is not necessarily zero.

m The left eigenvector (wy) corresponding Ay = 0 is not necessarily equal
to 1:
wil=0"



CONSENSUS OVER DIRECTED GRAPHS

m Let a MAS consisting of n agents as: X; = u;, x;(0) = xp, i=1,...,n.

m The consensus protocol

w= Y (x—x)

JENG

solves the consensus problem of a MAS if the underlying graph of the
MAS possesses a spanning tree.

m The consensus value is:




EXAMPLE 1:
CONSENSUS OVER DIRECTED GRAPHS




EXAMPLE 2:
CONSENSUS OVER DIRECTED GRAPHS

1 -1 0 0 0 O
0 1 0 -1 0 O
[ — 0 -1 1 0 0 O
0 0 0 1 -1 0
0 0 0 O 0 0

0 0 0 0 -1 1

m The left eigenvector corresponding to Ay =0isw; = (0000 « 0 0),

a € R.
m The consensus value is X = w{xo/W{1 = axps/a = xp5.




EXAMPLE 2:

CONSENSUS OVER DIRECTED GRAPHS




SETPOINT CONTROL PROBLEM OVER (GRAPHS

m Control problem: Let a MAS over directed graphs consisting of n
agents as: X; = u;, x;(0) = xj0, i=1,...,n.

m Develop the control (u;) such that lim; .o x; = xp Vxp, i=1,...,n,
where xp € R is prescribed.




SETPOINT CONTROL OVER GRAPHS

Leader. Agent £ in a MAS is a leader if Njy = () and Noy # 0.
Followers: All the other agents.

Leader protocol:

Up = Xp — Xy
Followers protocol is the consensus protocol:

up = Z(xj—x,-), i# 4L

JEN;

m The leader protocol combined the followers protocol solves the setpoint
control problem if the MAS has one spanning tree which root is the
leader.



STRONG FORMATION CONTROL PROBLEM

m Let a MAS consisting of n agents as: X; = u;, x,(0) = xp, i=1,...,n.

m Develop the control (u;) such that lim; ,ooX; = xp; Vxp, i=1,...,n,
where xp; € R is prescribed.




STRONG FORMATION CONTROL

m Define
€i = Xij — Xpi

m Leader protocol:
Up = —¢€y

m Followers protocol:

u; = Z(ej—e;), I#Z

JEN;

m The leader protocol combined the followers protocol solves the strong
formation control problem if the MAS has one spanning tree which root
is the leader.




ExaAMPLE: 2DOF STRONG FORMATION CONTROL

O O = O
—
|
—




ExaAMPLE: 2DOF STRONG FORMATION CONTROL




Synchronization of Nonlinear Sys-
tems




MODEL OF NONLINEAR DYNAMIC SYSTEMS

m Model of nonlinear dynamic systems
x = f(x), x(0) =x¢
such that f: R" — R” is smooth.

m x € R" is the state vector.
m Let s(t,xq, ty) a trajectory of the dynamic system above.




LASALLE’S INVARIANCE PRINCIPLE

m Let nonlinear dynamic system
x = f(x), x(0) = xo,
m Z € R" is an invariant set of the system trajectories if ty > 0 and
& €L = s(t o, to) V> to
m Assign a storage function S(x) : R” — R to the system that satisfies

S(x) > 0 Vx,
5(0) = 0.

m LaSalle’s theorem: If S(x) <0, Vx € X € R" then, as t — oo, the
trajectories of the system tend to the largest invariant set inside

S:{XEX\ S(x):O}



MODEL OF OPEN NONLINEAR SYSTEMS

m The model of open dynamic nonlinear systems:

x =f(x,u), x(0)=x

such that f,h : R” x R™ — R™ are smooth.

m u € R™ is the vector of inputs

m y € R™ is the vector of outputs




PASSIVE SYSTEMS

m A system is called passive, if there exists a continuously differentiable
storage function S : R" — R such that

S5(x) >0, Vx,
5(0) =0,

S< y'u, Vu,x

or equivalently:

ﬂﬂ§ﬂ®+éynﬂwﬂw,wm.




PASSIVE INPUT AFFINE SYSTEMS

m Consider the case of nonlinear input-affine systems

f(x) + G(x)u, x(0) =xo
h(x)

X
y
such that G: R” — R"” x R™ is smooth.

m The input-affine subsystem is passive iff the following conditions hold

x) <0,

oS
y" =hx)7 = 26(x)




PASSIVE INPUT AFFINE SYSTEMS

m The first condition ($2f(x) < 0) prescribes that the “stored energy” of

the system is non-increasing if u = 0.

m The second condition (y” = h(x)” = 92 G(x)) restricts the passive

output of the system.

m The inputs and the passive output should be “power-correlated”. If the
input is an effort (e.g. voltage, force), the output is a flow (e.g.

current, velocity).

Subsystem

Y, (flow)

u, (effort)

— o




m Let the dynamic model of a mechanical system (x -position, v - velocity,
u - external force, m - mass, Fy - damping coefficient)

X\ 0 n 0
v ) \ —Fw/m 1/m 4
m Consider the storage function:

5=

m Time derivative of the storage function

SszszJrvug vu

m The passive output:

EXAMPLE OF PASSIVE SYSTEM



NONLINEAR MAS

m Consider a MAS in which each agent's dynamics is given by
{ x; = fi(x) + Gi(x)w, x;(0) =xjo
Z,’ =
yi = hi(x;)
such that G: R” — R"” x R™ is smooth.

m Consider that the underlying graph of the network is undirected.

m Neighborhood set (N;): If 3; € N if u; may depend on yj.




SYNCHRONIZATION IN NONLINEAR MAS

m Let a MAS consisting of nonlinear agents >;, i=1,...n.

m The MAS is called output synchronized if

lim;_,oo |lyi — yjll =0, Vi,j




SYNCHRONIZATION IN NONLINEAR MAS

Let a MAS consisting of nonlinear agents >;, i=1,...n. If
m X; are passive Vi (wrt. to storage function S;(x;) ) and
m the underlying graph is strongly connected,

then the synchronization protocol

w=> (yj—)

JEN;

solves the output synchronization problem.




SYNCHRONIZATION IN NONLINEAR MAS

Proof.
m Let the storage function of MAS:

S=2)"5
i=1
m The time derivative of the storage function reads as:
: = " /0S; 0S;
=2 i=2 - fi(xi) + 7= Gi(xi)w;
S ;5 ; <8x,- (x) + ax’_c(x)u)

m As the system is passive g—ifi(x;) <0 and g—f;'G,-(x,-) =hx;)" =y
Then

SS Qiy,Tu,-
i=1




SYNCHRONIZATION IN NONLINEAR MAS

Proof.
m The time derivative of the storage function

n
5<2 Z yiw
i=1
m By applying the synchronization protocol
n n n
S<2Y > ywi-y)=2>_> ¥vi—-2>_ > vylvi
i=1 jEN; i=1 jeN; i=1 jeN;
m As the graph is strongly connected
n n
DD ¥vi=> > ¥/
i=1 jeN; i=1 jEN;
m |t yields that

S<2Y > ylvid Y vy D ylvi==>.> 5v) viy))

i=1 jeN; i=1 jeN; i=1 jeN; i=1 jeN;



SYNCHRONIZATION IN NONLINEAR MAS

Proof:

m The time derivative of the storage function
n
S<— Z Z(YI -¥) (vi—v)
=1 jEN;

m As 5 <0 we can apply the LaSalle theorem.
m The largest invariant set defined by S =0 is given by

yi—-y) (yi—y)=0,jeN, i=1...n

m Hence the synchronization protocol u; = Zje/\/,-(yi —y;) solves the
synchronization problem of passive nonlinear systems over strongly
connected graphs.




Networks Lotka-Volterra Systems




LOTKA-VOLTERRA SYSTEM

Describes the dynamic behavior of coexisting predator and prey populations:

1= x1(h — max2)
Xo = xo(—l + mo1x1)

m x; € R.( - prey population size,
m x2 € R - predator population size
m /1,lb € Ry - constant prey birth rate and predator death rate

B myo, My € Ry inter-influence parameters of the predator and prey
populations




LOTKA-VOLTERRA SYSTEMS

Lotka-Volterra modell

1= x1(h — miax2)
Xo = xo(—l + ma1x1)

m Trivial equilibrium point: x; = (0 0)7,

s O Y Y
m Non-trivial equilibrium point: x* = (m12 mzl)
350
300 ﬁ\
250 r/’
’/
200 ““
. 150 “‘ \
| \
100 |
‘ P4
50 \
\\‘\—/7//




STORAGE FUNCTION FOR LOTKA-VOLTERRA

SYSTEMS

m Storage function:

* w1, X1 * %7, X2
S=qa (x1 =584 = xllnxk) + co (x2 =56 = x21n)(2k)

1

where ¢; = ¢ > 0 and ¢ = 212

m21
m Time derivative of the storage function
5=0
wf TN
= oy
ol | AN
150 | \




OPEN LOTKA-VOLTERRA SYSTEMS

Describes the dynamic behavior of coexisting predator and prey population
with population in- and outflow:

X1 =x1(h — miaxa + up)
Xo = xo(—h + mai1x1 + us)

m u; - prey population in- or outflow rate,

m uy - predator population in- or outflow rate

u=(u uz)T




PAssiviTy OF OPEN LOTKA-VOLTERRA SYSTEMS
).(1 . X1 0 /1 — Mi12X2 + X1 0 uy
Xo N 0 xo —ly + mo1xq 0 xo us

£(x) G(x)

m Storage function:

X1 X2
S=c|x1—x —xIn— | +c(x—x5—xIn—
1 1 2 — X9

1

m First passivity condition: (5 <0)

5=0
m Second passivity condition (y” = h(x)" = %G(x)):
yi=(alba—x) albe-x)



NETWORKS OF LOTKA-VOLTERRA SYSTEMS

m Let a MAS consisting of N agents (habitats) described by open
Lotka-Volterra systems:

Xii = x1i(hi — mixqi + )
Xoi = Xoi(—hi + mixa; + ua;)
m As myo; = moy; = m; > 0, the passive output of the agent is
T

y =0a—x xx—x)

m The population flow rate among the agents is driven by the population
size difference among them:

(o)== =)



NETWORKS OF LOTKA-VOLTERRA SYSTEMS

m The passive outputs:
i = x1i — Xj;
— *
Yoi = Xoi — Xy

m The dynamics of agents in terms of passive outputs:

i = (yii + x3;) (hi — mixg; — miyyi + uy;)
Vi = (Yoi + X3;)(—hi + mix3y; + miyai + ug;)

m The population flow rate among the agents in terms of passive outputs:

( u ) B < D ien; iy = yii) + 2 e nr (4 — X0 )

Zje,/\f,-(yQJ' - }/2,‘) + Eje,A/’,'(X;j - XS,-)

uz




NETWORKS OF LOTKA-VOLTERRA SYSTEMS

m The dynamics of agents with synchronization protocol:

i = Wi+ x3) (hyi — miyai+ w1i) - = ZjeN,(yu — y1i)
Voi = (Yoi + %5;) (= hayi + miyoi + ui) U2 =37 nr (vo; — ¥2i)

where /1y,' = /1,' — m,-x*l‘,- aF ZJGM(XL' — X;L) and
* * *
by = bj — mix3; + Zje/\/,.(xzj — X5;)-
m The Lotka-Volterra agents are passive.
m Assume that the underlying graph of the network is strongly connected.

m Hence the synchronization protocol ensures the synchronization of the
nonlinear Lotka-Volterra agents, i.e.

lime oo (311 (8) = X4 () = lime oo (x12(8) = Xi5(8)) = - .. = im0 (x1(8) — X (8))

lime o0 (01 (8) = 553 (1)) = lime o0 (X22(1) — X52(1)) = - .. = limes o0 (x2n(2) — x2,(1))

s -



EXAMPLE: LOTKA-VOLTERRA NETWORKS




EXAMPLE: LOTKA-VOLTERRA NETWORKS - NO

CONNECTIONS

LV Agent 1

80 80
60 60
40 40
2 2

0 10 20 30 0 10 20 30
Tim
LV Agent 3
8 8
60 60
<40 0
20 t 20
0 0
0 10 20 30 0 10 20 30
Time




EXAMPLE: LOTKA-VOLTERRA NETWORKS - NO

CONNECTIONS

LV Agent 1
80
60
x40
20
o
0 10 20 30 40 50 60 70 80
Xy
LV Agent 2
2 —
20
15
v,
10 —
5
8 10 12 14 16 18 20 22 24 26
%
LV Agent 3
80
60
40
20
o




EXAMPLE:
CONNECTIONS

LOTKA-VOLTERRA

. LV Agent 1
16
. V\/\/
15
2
* 10
10
s
5
5
0 10 20 3 0 10 20 3
Time
LV Agent 2

0 10 20 30 0 10 20 30
Time
LV Agent 3
50 50
40 40
x 30 <30
. “IAAANANANN
10 10

NETWORKS



EXAMPLE: LOTKA-VOLTERRA

CONNECTIONS

NETWORKS

LV Agents 1,2, 3
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