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Basic Notions



Definitions

Agent (Control Systems view): A system with the following proprieties:
1. Its behavior can be controlled.
2. It can interact with other agents.

Multi-Agent System (Control Systems view): A set of agents that
interact with one-other (generally to solve a common task).
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Interactions - Communication Network

Interactions: The state of an agent is influenced by the states of some
other agents.
Ai - Agent
Ci - Controller
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Interactions - Physical Couplings
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Interactions
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Cooperative Control

Cooperation: a process during which a group of agents work together
to achieve a common goal.
Cooperation needs interaction.
Question: Which information is necessary for each agent to achieve the
common goal?
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Consensus Problem



Motivating Example - Robot Swarm

Consider a robotic agent that moves in a plane and its velocity can be
set along the two axis.

ẋ = ux

ẏ = uy

ux and uy: the velocities along the two axis
Assume that an agent can detect the other agents in its proximity
(neighbors) using some kind of obstacle detector with finite range (e.g.
LIDAR)
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Motivating Example - Robot swarm

Consider a swarm of 6 robots equipped with such sensors.
The interactions in this swarm are limited by the range of the sensors.
Based on this, we can define the proximity graph of the group.
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Undirected Graphs

Undirected graphs: G = (V, E)
V = {1, 2, . . . n} - set of vertices.
E ⊆ V × V - set of edges.
If the vertices i and j are connected, they are called to be adjacent.

9 74



Undirected Graphs

If the vertices i and j are connected, they are called to be adjacent.
Neighbor set of vertex i (Ni): The set of vertices that are adjacent to i
Path: A sequence of adjacent vertices.
Strongly Connected graph: There is a path from any vertex to any
other vertex.
If a graph is not strongly connected it can be decomposed into strongly
connected components (subgraphs).
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Matrices Associated to Graphs

Degree matrix: D = (dij) = diag (dimNi)

Adjacency matrix: A = (aij) =

{
1, if i and j adjacent,
0, otherwise.

D =


1 0 0 0 0 0
0 3 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 A =


0 1 0 0 0 0
1 0 1 1 0 0
0 1 0 1 0 0
0 1 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
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Laplacian Matrix of a Graph

Laplacian matrix: L = D − A

L =


1 −1 0 0 0 0
−1 3 −1 −1 0 0
0 −1 2 −1 0 0
0 −1 −1 2 0 0
0 0 0 0 1 −1
0 0 0 0 −1 1
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Eigenvalues of Laplacian Matrix

The row sum and column sum are zero, i.e. L1 = 0, 1TL = 0T.
L has at least one zero eigenvalue and the corresponding eigenvector is
1.
L = LT, i.e. all the eigenvalues are real.
All the eigenvalues are real, by Greshgorin’s theorem, and
λ1 = 0 ≤ λ2 ≤ . . . ≤ λn.
The Laplacian of an undirected graph has as many 0 eigenvalues as
many strongly connected component the graph has.
If the graph is strongly connected, rankL = n − 1.

L =

[
L1 O
O L2

]
=


1 −1 0 0 0 0
−1 3 −1 −1 0 0
0 −1 2 −1 0 0
0 −1 −1 2 0 0
0 0 0 0 1 −1
0 0 0 0 −1 1
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Consensus Problem

Let a MAS consisting of n agents as: ẋi = ui, xi(0) = xi0, i = 1, . . . , n.
The MAS is said to reach consensus if ∀xi0, i = 1, . . . , n.

limt→∞x1(t) = limt→∞x2(t) = . . . = limt→∞xn(t) = x, x ∈ R
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Example: Rendezvous Problem

Agent 1 with control: ẋ1 = u1, x1(0) = x10, u1 = x2 − x1
Agent 2 with control: ẋ2 = u2, x2(0) = x20, u1 = x1 − x2
The controlled multi-robot system:(

ẋ1
ẋ2

)
= −

(
1 −1
−1 1

)
︸ ︷︷ ︸

L

(
x1
x2

)

Eigenvalues are λ1 = 0, λ2 = −2.
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Example: Rendezvous Problem

Simulations:
x10 = 1, u1 = x2 − x1
x20 = 2, u1 = x1 − x2
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Consensus Protocol

Let the control (consensus protocol) for each agent ui =
∑

j∈Ni
(xj − xi)

The control directs the trajectory of the agent toward the centroid of
the neighboring agents.
The global model of the MAS with consensus protocol:

ẋ = −Lx, x(0) = x0

x = (x1 . . . xn)
T
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Example: Consensus Protocol

Control and global MAS model:

u1 = x2 − x1
u2 = x1 + x3 + x4 − 3x2
u3 = x2 + x4 − 2x2
u4 = x3 + x2 − 2x4
u5 = x6 − x5
u6 = x5 − x6


ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

 = −


1 −1 0 0 0 0
−1 3 −1 −1 0 0
0 −1 2 −1 0 0
0 −1 −1 2 0 0
0 0 0 0 1 −1
0 0 0 0 −1 1


︸ ︷︷ ︸

L


x1
x2
x3
x4
x5
x6
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Example: Consensus Protocol

eig(L) = [0 1 3 4 0 2]
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Analysis of Consensus Protocol

Question: Does the consensus protocol solves the consensus problem?
If yes, under which condition?

Analyze the system
ẋ = −Lx, x(0) = x0

The general solution of it, assuming different non-zero eigenvalues:

x(t) = c1e−λ1tv1 + c2e−λ2tv2 + . . .+ cne−λntvn

Here c1 are constants and vi is the eigenvector corresponding to λi:

Lvi = λivi
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Analysis of Consensus Protocol

Let the bock diagonal hypermatrix with two Laplace matrices in the
diagonal:

L =

[
L1 O
O L2

]
. Example : L =


1 −1 0 0 0 0
−1 3 −1 −1 0 0
0 −1 2 −1 0 0
0 −1 −1 2 0 0
0 0 0 0 1 −1
0 0 0 0 −1 1


The eigenvalues of L consist of eigenvalues of L1 and eigenvalues of L2.
L1 has one zero eigenvalue (λ11 = 0) and the corresponding eigenvector
of L is

v11 = [1T 0T]T Example : v11 = [1 1 1 1 0 0]T

L2 has one zero eigenvalue (λ21 = 0) and the corresponding eigenvector
of L is

v21 = [0T 1T]T Example : v21 = [0 0 0 0 1 1]T
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Analysis of Consensus Protocol

The general solution ẋ = −Lx, where L = diag(L1 L2):

x(t) = c11e−λ11tv11+. . .+c1n1e−λ1n1tv1n1+c21e−λ21tv21+. . .+c2n1e−λ2n1tv2n2

λ11 = 0, λ1i > 0, λ21 = 0, λ2i > 0, i ≥ 2. Hence:

limt→∞x(t) = c11
(

1
0

)
+ c21

(
0
1

)
=

(
c111
c211

)
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Consensus Value

Recall the global model of MAS

ẋ = −Lx, x(0) = x0

The scalar
z = 1Tx

is an invariant quantity along the dynamics of MAS, i.e.
z(t1) = z(t2), ∀t1, t2.
Proof: ż = 1Tẋ = −1TLx = 0.
As a consequence:

z(0) = 1Tx(0) = limt→∞1Tx(t) = z∞
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Consensus Value

Recall the steady state of the general solution of global MAS model:

ẋ1 = −L1x1, x1(0) = x01, limt→∞x1(t) = c111

ẋ2 = −L2x2, x2(0) = x02, limt→∞x2(t) = c211
Due to the invariant proprieties:

1Tx1(0) = limt→∞1Tx1(t) = c11n1 ⇒ c11 =

n1∑
i=1

x1i(0)/n1

1Tx2(0) = limt→∞1Tx2(t) = c21n2 ⇒ c21 =

n2∑
i=1

x2i(0)/n2

The consensus value:

limt→∞x1(t) =
∑n2

i=1 x1i(0)

n1
1

limt→∞x2(t) =
∑n2

i=1 x2i(0)

n2
1
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Example: Rendezvous Problem

The global MAS model:(
ẋ1
ẋ2

)
= −

(
1 −1
−1 1

)(
x1
x2

)
The space of the steady states:

x1 − x2 = 0
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Consensus Problem

The consensus protocol solves the consensus problem of a MAS
if the underlying graph of the MAS is strongly connected. The
consensus value is:

x =

∑n
i=1 xi(0)

n
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Consensus Example
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Formation Control



Weak Formation Control Problem

Let a MAS consisting of n agents as: ẋi = ui, xi(0) = xi0, i = 1, . . . , n.

Develop the control (ui) such that limt→∞|xi(t)− xj(t)| = δij ∀xi0,
i = 1, . . . , n, where δij ≥ 0.
Remark: The structure of the graph could impose restrictions on δij.
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Weak Formation Control

δij > 0 is feasible if ∃pi, pj such that δij = pi − pj ∀i, j.
Let

ei = xi − pi

Weak formation control protocol

ui =
∑
j∈Ni

(ej − ei)
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Weak Formation Control

The weak formation control protocol solves the consensus problem of a
MAS if the underlying graph of the MAS is strongly connected.
As ẋi = ėi the transformed model of the global MAS is

ė = −Le

In the same way as in the case of the consensus problem the weak
formation control protocol ensures that

limt→∞e1(t) = limt→∞e2(t) = . . . = limt→∞en(t) = e, e =

∑n
i=1 ei(0)

n
i.e.

limt→∞xi(t) = pi + e,
limt→∞|xi(t)− xj(t)| = |pi − pj| = δij ∀i, j.
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Example: 2DOF Weak Formation Control

ẋi = uix

ẏi = uiy
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Example: 2DOF Weak Formation Control
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Consensus over Directed Graphs

Assume a number of robotic agents equipped with such obstacle
localization sensor which ranges are limited.
With such sensors the agent i may influence the behavior of agent j but
it could not be true vice-versa.
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Directed Graphs

Directed graphs: G = (V, E)
V = {1, 2, . . . n} - set of vertices.
E ⊆ V × V - set of directed edges.
Adjacent vertices: j and i are adjacent if there is a directed edge from j
to i (j → i).
NIi input neighborhood set of vertex i: Vertex j ∈ NIi if j and i are
adjacent (j → i).
NOi output neighborhood set of vertex i: Vertex j ∈ NOi if i and j are
adjacent (i → j).
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Spanning Tree

A directed path is a sequence of adjacent vertices
(i1 → i2 → . . . → im).
G is said to posses a spanning tree if there exists a vertex r (root) such
that there exists a directed path from r to any other vertex j.
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Laplacian of a Directed Graph

L =


1 −1 0 0 0 0
0 1 0 −1 0 0
0 −1 1 0 0 0
0 0 −1 2 −1 0
0 0 0 −1 1 0
0 0 0 0 −1 1
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Laplacian of a Directed Graph

L =


1 −1 0 0 0 0
0 1 0 −1 0 0
0 −1 1 0 0 0
0 0 −1 2 −1 0
0 0 0 −1 1 0
0 0 0 0 −1 1


The row sum of L is zero.
It has a zero eigenvalue (λ1 = 0) and the corresponding right
eigenvector is 1:

L1 = 0

The column sum of L is not necessarily zero.
The left eigenvector (w1) corresponding λ1 = 0 is not necessarily equal
to 1:

wT
1 L = 0T
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Consensus over Directed Graphs

Let a MAS consisting of n agents as: ẋi = ui, xi(0) = xi0, i = 1, . . . , n.

The consensus protocol

ui =
∑
j∈NIi

(xj − xi)

solves the consensus problem of a MAS if the underlying graph of the
MAS possesses a spanning tree.

The consensus value is:
x =

wT
1 x0

wT
1 1
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Example 1:
Consensus over Directed Graphs
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Example 2:
Consensus over Directed Graphs

L =


1 −1 0 0 0 0
0 1 0 −1 0 0
0 −1 1 0 0 0
0 0 0 1 −1 0
0 0 0 0 0 0
0 0 0 0 −1 1


The left eigenvector corresponding to λ1 = 0 is w1 = (0 0 0 0 α 0 0),
α ∈ R.
The consensus value is x = wT

1 x0/wT
1 1 = αx05/α = x05.
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Example 2:
Consensus over Directed Graphs
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Setpoint Control Problem over Graphs

Control problem: Let a MAS over directed graphs consisting of n
agents as: ẋi = ui, xi(0) = xi0, i = 1, . . . , n.

Develop the control (ui) such that limt→∞xi = xP ∀xi0, i = 1, . . . , n,
where xP ∈ R is prescribed.
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Setpoint Control over Graphs

Leader: Agent ℓ in a MAS is a leader if NIℓ = ∅ and NOℓ ̸= ∅.
Followers: All the other agents.
Leader protocol:

uℓ = xP − xℓ
Followers protocol is the consensus protocol:

ui =
∑
j∈NIi

(xj − xi), i ̸= ℓ

The leader protocol combined the followers protocol solves the setpoint
control problem if the MAS has one spanning tree which root is the
leader.
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Strong Formation Control Problem

Let a MAS consisting of n agents as: ẋi = ui, xi(0) = xi0, i = 1, . . . , n.

Develop the control (ui) such that limt→∞xi = xPi ∀xi0, i = 1, . . . , n,
where xPi ∈ R is prescribed.
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Strong Formation Control

Define
ei = xi − xPi

Leader protocol:
uℓ = −eℓ

Followers protocol:
ui =

∑
j∈Ni

(ej − ei), i ̸= ℓ

The leader protocol combined the followers protocol solves the strong
formation control problem if the MAS has one spanning tree which root
is the leader.
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Example: 2DOF Strong Formation Control

L =


0 0 0 0
0 1 −1 0
0 0 1 −1
−1 0 0 1
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Example: 2DOF Strong Formation Control

47 74



Synchronization of Nonlinear Sys-
tems



Model of Nonlinear Dynamic Systems

Model of nonlinear dynamic systems

ẋ = f(x), x(0) = x0

such that f : Rn → Rn is smooth.
x ∈ Rn is the state vector.
Let s(t, x0, t0) a trajectory of the dynamic system above.
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LaSalle’s Invariance Principle

Let nonlinear dynamic system

ẋ = f(x), x(0) = x0,

I ∈ Rn is an invariant set of the system trajectories if t0 ≥ 0 and

ξ0 ∈ I =⇒ s(t, ξ0, t0) ∀t > t0

Assign a storage function S(x) : Rn → R to the system that satisfies

S(x) ≥ 0 ∀x,
S(0) = 0.

LaSalle’s theorem: If Ṡ(x) ≤ 0, ∀x ∈ X ∈ Rn then, as t → ∞, the
trajectories of the system tend to the largest invariant set inside

S =
{

x ∈ X | Ṡ(x) = 0
}
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Model of Open Nonlinear Systems

The model of open dynamic nonlinear systems:

ẋ = f(x, u), x(0) = x0

y = h(x, u)

such that f, h : Rn × Rm → Rm are smooth.
u ∈ Rm is the vector of inputs
y ∈ Rm is the vector of outputs
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Passive Systems

A system is called passive, if there exists a continuously differentiable
storage function S : Rn → R such that

S(x) ≥ 0, ∀x,
S(0) = 0,

Ṡ ≤ yTu, ∀u, x

or equivalently:

S(t) ≤ S(0) +
∫ t

0

yT(τ)u(τ)dτ, ∀u, x.
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Passive Input Affine Systems

Consider the case of nonlinear input-affine systems

ẋ = f(x) + G(x)u, x(0) = x0

y = h(x)

such that G : Rn → Rn × Rm is smooth.
The input-affine subsystem is passive iff the following conditions hold

Ṡ =
∂S
∂x f(x) ≤ 0,

yT = h(x)T =
∂S
∂xG(x)
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Passive Input Affine Systems

The first condition (∂S
∂x f(x) ≤ 0) prescribes that the “stored energy” of

the system is non-increasing if u = 0.
The second condition (yT = h(x)T = ∂S

∂x G(x)) restricts the passive
output of the system.
The inputs and the passive output should be “power-correlated”. If the
input is an effort (e.g. voltage, force), the output is a flow (e.g.
current, velocity).

ui (effort)

yi (flow)

Subsystem
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Example of Passive System

Let the dynamic model of a mechanical system (x -position, v - velocity,
u - external force, m - mass, FV - damping coefficient)(

ẋ
v̇

)
=

(
0

−FVv/m

)
+

(
0

1/m

)
u

Consider the storage function:

S =
mv2
2

Time derivative of the storage function

Ṡ = −FVv2 + vu ≤ vu

The passive output:

y =
∂S
∂xG(x) = (0 mv)

(
0

1/m

)
= v
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Nonlinear MAS

Consider a MAS in which each agent’s dynamics is given by

Σi :

{
ẋi = fi(xi) + Gi(xi)ui, xi(0) = xi0
yi = hi(xi)

such that G : Rn → Rn × Rm is smooth.

Consider that the underlying graph of the network is undirected.

Neighborhood set (Ni): If Σj ∈ Ni if ui may depend on yj.
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Synchronization in Nonlinear MAS

Let a MAS consisting of nonlinear agents Σi, i = 1, . . . n.

The MAS is called output synchronized if

limt→∞ ∥yi − yj∥ = 0, ∀i, j
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Synchronization in Nonlinear MAS

Let a MAS consisting of nonlinear agents Σi, i = 1, . . . n. If
Σi are passive ∀i ( wrt. to storage function Si(xi) ) and
the underlying graph is strongly connected,

then the synchronization protocol

ui =
∑
j∈Ni

(yj − yi)

solves the output synchronization problem.
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Synchronization in Nonlinear MAS

Proof:
Let the storage function of MAS:

S = 2

n∑
i=1

Si

The time derivative of the storage function reads as:

Ṡ = 2

n∑
i=1

Ṡi = 2

n∑
i=1

(
∂Si
∂xi

fi(xi) +
∂Si
∂xi

Gi(xi)ui

)

As the system is passive ∂Si
∂xi

fi(xi) ≤ 0 and ∂Si
∂xi

Gi(xi) = hi(xi)T = yT
i .

Then

Ṡ ≤ 2

n∑
i=1

yT
i ui
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Synchronization in Nonlinear MAS

Proof:
The time derivative of the storage function

Ṡ ≤ 2

n∑
i=1

yT
i ui

By applying the synchronization protocol

Ṡ ≤ 2

n∑
i=1

∑
j∈Ni

yT
i (yj − yi) = 2

n∑
i=1

∑
j∈Ni

yT
i yj − 2

n∑
i=1

∑
j∈Ni

yT
i yi

As the graph is strongly connected
n∑

i=1

∑
j∈Ni

yT
i yi =

n∑
i=1

∑
j∈Ni

yT
j yj

It yields that

Ṡ ≤ 2

n∑
i=1

∑
j∈Ni

yT
i yj−

n∑
i=1

∑
j∈Ni

yT
i yi−

n∑
i=1

∑
j∈Ni

yT
j yj = −

n∑
i=1

∑
j∈Ni

(yi−yj)
T(yi−yj)
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Synchronization in Nonlinear MAS

Proof:
The time derivative of the storage function

Ṡ ≤ −
n∑

i=1

∑
j∈Ni

(yi − yj)
T(yi − yj)

As Ṡ ≤ 0 we can apply the LaSalle theorem.
The largest invariant set defined by Ṡ = 0 is given by

(yi − yj)
T(yi − yj) = 0, j ∈ Ni, i = 1 . . . n

Hence the synchronization protocol ui =
∑

j∈Ni
(yj − yi) solves the

synchronization problem of passive nonlinear systems over strongly
connected graphs.
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Networks Lotka-Volterra Systems



Lotka-Volterra System

Describes the dynamic behavior of coexisting predator and prey populations:
ẋ1 = x1(l1 − m12x2)
ẋ2 = x2(−l2 + m21x1)

x1 ∈ R>0 - prey population size,
x2 ∈ R>0 - predator population size
l1, l2 ∈ R>0 - constant prey birth rate and predator death rate
m12,m21 ∈ R>0 inter-influence parameters of the predator and prey
populations
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Lotka-Volterra Systems

Lotka-Volterra modell

ẋ1 = x1(l1 − m12x2)
ẋ2 = x2(−l2 + m21x1)

Trivial equilibrium point: x∗
0 = (0 0)T,

Non-trivial equilibrium point: x∗ = ( l1
m12

l3
m21

)T

62 74



Storage Function for Lotka-Volterra
Systems

Storage function:

S = c1
(

x1 − x∗1 − x∗1lnx1
x∗1

)
+ c2

(
x2 − x∗2 − x∗2lnx2

x∗2

)
where c1 = c > 0 and c2 = c m12

m21

Time derivative of the storage function

Ṡ = 0
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Open Lotka-Volterra Systems

Describes the dynamic behavior of coexisting predator and prey population
with population in- and outflow:

ẋ1 = x1(l1 − m12x2 + u1)
ẋ2 = x2(−l2 + m21x1 + u2)

u1 - prey population in- or outflow rate,
u2 - predator population in- or outflow rate

u = (u1 u2)
T
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Passivity of Open Lotka-Volterra Systems

(
ẋ1
ẋ2

)
=

(
x1 0
0 x2

)(
l1 − m12x2
−l2 + m21x1

)
︸ ︷︷ ︸

f(x)

+

(
x1 0
0 x2

)
︸ ︷︷ ︸

G(x)

(
u1

u2

)

Storage function:

S = c1
(

x1 − x∗1 − x∗1lnx1
x∗1

)
+ c2

(
x2 − x∗2 − x∗2lnx2

x∗2

)
First passivity condition: (Ṡ ≤ 0)

Ṡ = 0

Second passivity condition (yT = h(x)T = ∂S
∂x G(x)):

yT = (c1(x1 − x∗1) c2(x2 − x∗2))
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Networks of Lotka-Volterra Systems

Let a MAS consisting of N agents (habitats) described by open
Lotka-Volterra systems:

ẋ1i = x1i(l1i − mix1i + u1i)
ẋ2i = x2i(−l2i + mix2i + u2i)

As m12i = m21i = mi > 0, the passive output of the agent is

yT = (x1 − x∗1 x2 − x∗2)

The population flow rate among the agents is driven by the population
size difference among them:(

u1

u2

)
=

( ∑
j∈Ni

(x1j − x1i)∑
j∈Ni

(x2j − x2i)

)
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Networks of Lotka-Volterra Systems

The passive outputs:
y1i = x1i − x∗1i
y2i = x2i − x∗2i

The dynamics of agents in terms of passive outputs:

ẏ1i = (y1i + x∗1i)(l1i − mix∗1i − miy1i + u1i)
ẏ2i = (y2i + x∗2i)(−l2i + mix∗21i + miy2i + u2i)

The population flow rate among the agents in terms of passive outputs:(
u1

u2

)
=

( ∑
j∈Ni

(y1j − y1i) +
∑

j∈Ni
(x∗1j − x∗1i)∑

j∈Ni
(y2j − y2i) +

∑
j∈Ni

(x∗2j − x∗2i)

)
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Networks of Lotka-Volterra Systems

The dynamics of agents with synchronization protocol:

ẏ1i = (y1i + x∗1i)(l1yi − miy1i + u1i) u1i =
∑

j∈Ni
(y1j − y1i)

ẏ2i = (y2i + x∗2i)(−l2yi + miy2i + u2i) u2i =
∑

j∈Ni
(y2j − y2i)

where l1yi = l1i − mix∗1i +
∑

j∈Ni
(x∗1j − x∗1i) and

l2yi = l2i − mix∗2i +
∑

j∈Ni
(x∗2j − x∗2i).

The Lotka-Volterra agents are passive.
Assume that the underlying graph of the network is strongly connected.
Hence the synchronization protocol ensures the synchronization of the
nonlinear Lotka-Volterra agents, i.e.

limt→∞(x11(t)− x∗11(t)) = limt→∞(x12(t)− x∗12(t)) = . . . = limt→∞(x1n(t)− x∗1n(t))
limt→∞(x21(t)− x∗21(t)) = limt→∞(x22(t)− x∗22(t)) = . . . = limt→∞(x2n(t)− x∗2n(t))
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Example: Lotka-Volterra Networks

x∗11 = x∗12 = 20

x∗21 = x∗22 = 15

x∗31 = x∗32 = 10
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Example: Lotka-Volterra Networks - No
Connections
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Example: Lotka-Volterra Networks - No
Connections
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Example: Lotka-Volterra Networks -
Connections
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Example: Lotka-Volterra Networks -
Connections
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