
Control of Interconnected
Chemical Reaction Networks

Márton, Lőrinc
Szederkényi, Gábor
Hangos, Katalin
SAPIENTIA - Hungarian University of Transylvania
SZTAKI - Institute for Computer Science and Control
University of Pannonia
Pázmany Péter Catholic University



Short Resume (Márton, Lőrinc)

BSc and MsC - Control Engineering and Industrial Informatics - Petru
Maior University - 1994-2000
PhD - Robot Control - Budapest University of Technology and
Economics - 2000-2003
Bolyai Janos Postdoctoral Scholarship - Non-smooth nonlinearities in
robotic and mechatronic systems - Budapest University of Technology
and Economics - 2007-2010
Humboldt Postdoctoral Scholarship - Fault Diagnosis, Teleoperation -
DLR - German Aerospace Center - Institute of Robotics and
Mechatronics - 2010-2012
Visiting Researcher - Networked Control - Ruhr University - 2016
Visiting Researcher, PhD Supervisor - Process Networks, Engineering
Applications of Delay Systems - SZTAKI, University of Pannonia
Associate Professor - Control Engineering, Robotics - Sapientia
Hungarian University of Transylvania - current position

1 46



Networked Control Systems

A Networked Control System is a control system wherein the control loops
are closed through a communication network. The related research is
categorized into one of the following broader terms:

Control over networks: Deals with control strategies and control system
design over the network to minimize the effect of adverse network
parameters (e.g. communication delay) on control performances.
Control of networks: Study and research on communications and
networks to make them suitable for real-time/reliable communication
(routing control, congestion reduction).
Control using networks: Exploit the advantages of the interconnections
in the networks to solve complex control tasks (e.g. leader following
multi-agent systems, consensus problem).
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Overview

This presentation is based on the recent paper “L. Márton, G. Szederkényi,
K. Hangos, Distributed control of interconnected Chemical Reaction
Networks with delay, Journal of Process Control, Vol. 71, 2018, pp. 52-62”.

Content:

1. Interconnected Passive Systems

2. Interconnected Chemical Reaction Networks

3. Distributed Setpoint Control Design

4. Case Study

5. Conclusions
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Interconnected Passive Systems



Interconnected Systems

An interconnected system consists of subsystems (agents) in which the
input of each subsystem may depend on the outputs of the other
subsystems.
The dynamics of each subsystem is modeled using input affine ODEs
(Ordinary Differential Equations) in the form

ċ(j) = f(j)(c(j)) + G(j)(c(j))u(j), c(j)(0) = c(j)
◦ ,

y(j) = h(j)(c(j))

c(j) ∈ Rn, y(j),u(j) ∈ Rm are the state-, output- and input vectors.
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Passive Subsystems

A subsystem is called passive, if there exists a continuously differentiable
function S(j) : Rn → R such that

S(j)(c(j)) ≥ 0, ∀c(j),

S(j)(0) = 0,

Ṡ(j) ≤ y(j)Tu(j), ∀u(j), c(j).

or equivalently:

S(j)(t) ≤ S(j)
◦ +

∫ t

0

y(j)T(τ)u(j)(τ)dτ, ∀u(j), c(j).

S is called the storage function of the subsystem.
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Passive Subsystems - 2

An input-affine system system (ċ(j) = f(j)(c(j)) + G(j)(c(j))u(j)) is
passive iff the following conditions hold

∂S(j)

∂c(j) f(j)(c(j)) ≤ 0,

∂S(j)

∂c(j) G(j)(c(j)) =
(

h(j)(c(j))
)T

Passivity theory plays a key role in analyzing the stability of nonlinear
systems as it is shown that passivity of involves the stability of the
autonomous system ċ(j) = f(j)(c(j)) under mild conditions.
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Interconnections

The underlying graph of the interconnected system is a directed graph
in which each vertex corresponds to a subsystem. There is a directed
edge from the vertex k to the vertex j if the input of the jth subsystem
depends explicitly on the output of the kth subsystem.
Neighbor set of the jth vertex (Nj): the kth vertex belongs to Nj if
there is a directed edge from the vertex k to the vertex j.
Consider the input of each subsystem in the form:

u(j)(t) = u(j)
(

y(k1)(t − Tk1j), . . . ,y(kJ)(t − TkJj)
)
,

where 0 ≤ Tkij < ∞ is a constant transport delay.
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Synchronization

The outputs of the subsystems in the interconnected system are
synchronized if limt→∞|y(j)(t)− y(k)(t)| → 0,∀j, k.
Assume the inputs in the form (synchronization protocol)

u(j)(t) =
∑
k∈Nj

wkj(y(k)(t − Tkj)− y(j)(t)), wkj > 0,

Under certain assumptions on the underlying graph (existence of a
spanning tree) and on the subsystems (passivity) it can be shown1 that
the synchronization protocol ensures the synchronization of the
subsystems, by using the the following functional:

SΣ =

N∑
i=1

S(j) +
N∑

j=1

∑
k∈Nj

∫ t

t−Tkj

y(j)T(τ)y(j)(τ)dτ.

1N. Chopra, M.W. Spong, Passivity-based control of multi-agent systems, 2006
8 46



Interconnected Chemical Reaction
Networks



Process Network
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Process Network - 2
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Process Network - 3
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Process Network - 4
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Convection Network

Consider C continuously stirred tank reactors (CSTRs) that are
connected through static connections. We assume constant volume,
constant temperature each CSTR.
Each CSTR has an inlet and an outlet port with volumetric flow rates
vIi and vi

Connections are set up between the reactors such that the outlet of the
ith reactor is divided into fractions with the fraction coefficients αij that
are fed into the jth reactor. This means that

C∑
ℓ=0

αiℓ = 1, i = 0, ..., C,

vIj = vj =
C∑

ℓ=0

αℓjvℓ, j = 0, ..., C.

13 46



Convection Network - Environment

We introduce a pseudo-CSTR (CSTR0) for describing the environment.
Because of the constant volume assumption of each internal CSTR, this
assumption also holds for the environment, such that vI0 = v0.
Because constant volume is assumed in every region, the sum of
convective inflows from the environment is equal to the sum of the
convective outflows to the environment.

v0 =

C∑
ℓ=0

α0ℓvℓ

14 46



Convection Network - General form

We can formulate the Kirchhoff convection matrix as follows:

CC =


−(1− α00)v0 α10v1 α20v2 . . . αC0vC

α01v0 −(1− α11)v1 α21v2 . . . αC1vC
· · ·

α0Cv0 α1Cv1 α2Cv2 . . . −(1− αCC)vC


The constant volume assumption implies that CC1 = 0.
Here 1 = (1 1 . . . 1)T.
Moreover, 1TCC = 0T.
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Chemical Reaction Networks (CRN)

Chemical Reaction Networks (CRNs) are composed of elementary
irreversible reactions Rk : Ci → Cj, k = 1...,R, where Cj, j = 1, ...,m
are the so called complexes.
A complex Cj is formally a linear combination of species Xi, i = 1, ...,K,
such that Cj =

∑K
i=1 βijXi, for j = 1, . . . ,m, where βij is the nonnegative

stoichiometric coefficient corresponding to species Xi in complex Cj.
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CRN - Dynamic Model

The concentrations of the species are collected into a vector c ∈ RK so
that ci = [Xi] for i = 1, . . . ,K. The dynamics of a CRN describing the
time evolution of the concentrations of the species induced by the
reactions can be written as

ċ = YAκφ(c), c(0) = c◦ > 0

Y ∈ RK×m is the complex composition matrix the jth column of which
contains the stoichiometric coefficients of complex Cj, i.e.
Yij = βij, ∀i, j.
φi(c) =

∏K
i=1 cYik

i is the mass action vector
Aκ ∈ Rm×m is the Kirchhoff matrix of the CRN:

Aκ(i, j) =
{

κji, for j ̸= i
−
∑

ℓ ̸=j κjℓ, if j = i.

where κji is the rate constant of the reaction Rk : Cj → Ci.
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CRN - Example

Let us consider a chemical reaction network consisting of the following
reactions:

R1 : 2X3
κ12−−→ 2X1

κ23−−→ 2X2, R2 : 2X3
κ13−−⇀↽−−
κ31

2X2.

The model contains three species: X1, X2, X3, and three complexes:
C1 = 2X3, C2 = 2X1, C3 = 2X2. From these, the complex composition
matrix can be written as

Y =

 0 2 0
0 0 2
2 0 0


The network contains four elementary reactions. The rate coefficients
of these reactions are the non-zero off-diagonal elements of the
Kirchhoff matrix which is given by

Aκ =

 −(κ12 + κ13) 0 κ31

κ12 −κ23 0
κ13 κ23 −κ31


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CRN - Stoichiometric compatibility class

The reaction vector of Rk is formed by the corresponding
stoichiometric vectors, such that ek = Y·i − Y·j. The span of the
reaction vectors defines the stoichiometric subspace of the CRN:
Sc = span {ek}. The positive stoichiometric compatibility classes of a
CRN are represented by Sc◦ = (c◦ + Sc) ∩ RnS

+ .
The general CRN model may have multiple (even infinite number of)
steady states in the whole state space. Therefore, the structure and
number of equilibria are most often studied by restricting the dynamics
to the stoichiometric compatibility classes corresponding to different
initial conditions.
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CRN - Stability

The deficiency of a CRN realization (ċ = YAκφ(c)) is defined as
δ = dim(KerY ∩ ImAκ).
A CRN is weakly reversible if the existence of a directed path (i.e.
reaction sequence) from the complex Ci to the complex Cj implies the
existence of a directed path from Cj to Ci.
If a CRN is weakly reversible and has zero deficiency then it has exactly
one equilibrium point (c∗) in each positive stoichiometric compatibility
class that is at least locally stable with the following Lyapunov function:

S̃(c) =
K∑

i=1

[
ci

(
ln ci

c∗i
− 1

)
+ c∗i

]

20 46



Interconnected Open CRNs

A number of C mass-action chemical reaction networks are considered.
Transport delays (Tℓj) are present in the interconnections among the
CSTRs.
The state equation of the jth open CRN reads as:

Vj
dc(j)i
dt =

C∑
ℓ=0

αℓjvℓc(ℓ)i (t − Tℓj)− vjc(j)i + VjY(j)A(j)
κ φ(c(j)),
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Passivity of open CRNS

Consider that the input of the jth open CRN (u(j) ∈ RK) is the
difference between the convective component mass in- and outflow
terms:

dc(j)

dt = Y(j)A(j)
κ φ(j)(c(j)) +

1

Vj
u(j).

Lemma: If the homogeneous part of the model above is weakly
reversible and has zero deficiency then the open CRNis passive from
input u(j) to the output y(j) = ζ

(
Lnc(j) − Lnc(j)∗).

Idea of proof: Let the storage function
S(j) = ζVj

((
Ln c(j) − Ln c(j)∗)T c(j) − 1T (c(j) − c(j)∗)) , ζ > 0.

From weakly reversible and zero deficiency assumption yields that
Ṡ(j)(c(j)) ≤ 0

The passive output yields from direct computation y(j) = ∂S(j)

∂c(j) G(j)(c(j)).
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Distributed Setpoint Control De-
sign



Control Objective

Let the setpoint of the jth CSTR be c(j)
SP that belongs to the equilibrium

point set of the jth CRN.
Design a distributed controller for each CRN such to assure that c(j) → c(j)

SP
as t → ∞, ∀j = 1 . . . C.
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Controlled Process Network
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Local Control Input

In the controlled process network the input vector of the jth open CRN
has the form:

u(j) =
C∑

ℓ=0

aℓjṽℓc(ℓ)(t − Tℓj) + aLjṽjc(j)
L − ṽjc(j)

where ṽj = vj + vLj, aLj = vLj/ṽj.
Let us distinguish in the inflow vector u(j) the interconnection term
(i(j)) and the local control term (u(j)

L ) as follows:

u(j) = i(j) + u(j)
L ,

i(j) =

C∑
ℓ=0

aℓjṽℓc(ℓ)(t − Tℓj)− (1− aLj)ṽjc(j),

u(j)
L = aLjṽj

(
c(j)

L − c(j)
)
.
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Process Network - Environment
Interconnections
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Concept of Synchronization-based Control

Recall the passive output of the jth CRN y(j) = ζ
(
Lnc(j) − Lnc(j)∗).

If the synchronization can be reached in the process network, the
steady-state outputs of the CRNs take the same value, i.e. y(j) = y(k)

as t → ∞ ∀j, k = 1 . . . C.
As the supply has constant concentration vector, i.e. c(0) = c(0)∗ it can
be considered that y(0)(t) = 0.
If the outputs of all CRNs are synchronized (y(j) = y(i) ∀i, j), it yields
that y(j) = y(0) = 0 ∀j ∈ N0, i.e. c(j) = c(j)∗ ∀j ∈ N0. Moreover, if the
underlying graph of the process network contains a spanning tree which
root is CSTR0, y(j) = 0, i.e. c(j) = c(j)∗ ∀j = 1 . . . C.
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Local Control Input Computation

Recall again the desired passive output y(j) = ζ
(

Lnc(j) − Lnc(j)
SP

)
.

To satisfy the requirements for synchronization, the input of the jth
subsystem should be:

u(j)
y =

C∑
ℓ=0

aℓjṽℓy(ℓ)(t − Tℓj)− (1− aLj)ṽjy(j).

We can compute the explicit form of the local control input which
satisfies u(j) = i(j) + u(j)

L = u(j)
y .

c(j)
L = y(j)+

1

aLjṽj

( C∑
ℓ=0

aℓjṽℓ
(

y(ℓ)(t − Tℓj)− c(ℓ)(t − Tℓj)
)
− ṽj

(
y(j) − c(j)

))
.
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The Properties of the Control

Theorem: Consider a system of interconnected CRNs. If the CRN
subsystems have zero deficiency, are weekly reversible and persistent, the
underlying graph of the interconnected system contains a directed spanning
tree which root is the CSTR0, and c(j)

L can be chosen such that u(j) = u(j)
y

element-wise, then c(j)(t) is bounded for t ≥ 0 and c(j) → c(j)
SP as t → ∞

∀j > 0.
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The Properties of the Control

Idea of proof :
Define the following Lyapunov-Krasovskii functional:

SΣ = 2
C∑

j=0

S(j) +
C∑

j=0

C∑
ℓ=0

aℓjṽℓ
∫ t

t−Tℓj

y(ℓ)Ty(ℓ)dξ.

By applying the proposed control and the introduced assumptions, it
can be shown that:

ṠΣ ≤ −
C∑

j=0

C∑
ℓ=0

aℓjṽℓ
(

y(j) − y(ℓ)(t − Tℓj)
)T (

y(j) − y(ℓ)(t − Tℓj)
)
≤ 0.

30 46



The Properties of the Control

Idea of proof :
Let us introduce the notation

e(j,ℓ)i (t) = y(j)i (t)− y(ℓ)i (t − Tℓj).

As ṠΣ ≤ 0 it yields that SΣ(∞) = limt→∞SΣ(t) < ∞ for finite SΣ(0).
It yields that:
C∑

j=0

C∑
ℓ=0

aℓjṽℓ
K∑

i=1

∫ ∞

t=0

(
y(j)i (ξ)− y(ℓ)i (ξ − Tℓj)

)2
dξ ≤ SΣ(0)−SΣ(∞) < ∞.

Hence, e(j,ℓ)i ∈ L2 ∀i, j, ℓ.
Since SΣ(t) < ∞ and c(j)SPi is a finite, strictly positive constant ∀ i, j, it
yields that c(j)i and consequently e(j,ℓ)i , y(j)i ∈ L∞ ∀i, j, ℓ.
By inspecting the dynamics of the controlled subsystems, it can also be
seen that ẏi

(j) ∈ L∞.
As e(j,ℓ)i ∈ L2, e(j,ℓ)i ∈ L∞ and ė(j,ℓ)i ∈ L∞, by Barbalat’s lemma, it
yields that limt→∞e(j,ℓ)i = 0 ∀i, j, ℓ.
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Control Implementation

Distributed control: The control input of the jth subsystem depends on
the state of the jth subsystem and the state of the neighboring
subsystems.
Decentralized control: The control input of the jth subsystem depends
only on the state of the jth subsystem.
The control signal

c(j)
L = y(j)+

1

aLjṽj

( C∑
ℓ=0

aℓjṽℓ
(

y(ℓ)(t − Tℓj)− c(ℓ)(t − Tℓj)
)
− ṽj

(
y(j) − c(j)

))

can be implemented in a distributed way.
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Constraint on Control Input

During the control design the physical meaning of the control inputs,
that are concentrations, should be taken into account. This implies,
that the control should always be positive, i.e. c(j)

L ≥ 0 element-wise.
The steady-state value of the control is

c(j)∗
L =

1

aLjṽj

(
−

C∑
ℓ=0

aℓjṽℓc(ℓ)
SP + ṽjc(j)

SP

)
. (1)

The positiveness of the control input in steady state is assured if the
following inequalities hold element-wise:

C∑
ℓ=0

aℓjṽℓc(ℓ)
SP ≤ ṽjc(j)

SP, ∀j, ℓ = 1 . . . C.
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Control Robustness

The resulting control does not depend on the nonlinear terms and on
the reaction rate constants in the model of the addressed CRN
subsystems; only the parameters of the convection network are
necessary for the implementation.
The parameter uncertainties in the CRN subsystems are not treated.
The uncertainties in the convection networks are modeled as unknown
additive disturbance flows.
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Controlled Process Network
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Open CRN Subsystems with Disturbance

Consider that the CRNs in the interconnected system are subject to
additive disturbances

dc(j)

dt = Y(j)A(j)
κ φ(j)(c(j)) +

1

Vj
u(j) + d(j), j = 1 . . . C

where the disturbance input d(j)(t) ∈ RK.
The passivity property is preserved from d(j) to y(j).
Assumption: The disturbance input d(j) is continuous and

∥d(j)∥2 ≤ d(j)
M

where d(j)
M ∈ R+ is a finite constant.

Let d = (d(1)T . . . d(C)T)T. By the assumption above it yields

∥d∥2 ≤ dM, where dM =

√√√√ C∑
j=1

(
d(j)

M

)2
.
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Control in the Presence of Disturbance

Choose c(j)
L such that u(j) = u(j)

d where

u(j)
d =

C∑
ℓ=0

aℓjṽℓy(ℓ)(t − Tℓj)− (1− aLj)ṽjy(j) − γ

2
y(j), γ > 0.

This augmented control follows the idea of high-gain control methods
to attenuate the effects of unmodelled disturbances and uncertainties in
the interconnections on the control performances: in stable control
loops, with sufficiently high feedback gain the effect of the bounded
disturbances on steady-state performances can be made arbitrarily
small.
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The Properties of the Augmented Control

Theorem: Consider a system of interconnected CRNs with disturbance. If
the CRN subsystems have zero deficiency, are weekly reversible and
persistent, the underlying graph of the interconnected system contains a
directed spanning tree which root is the CSTR0, the disturbance is bounded
and c(j)

L can be chosen such that u(j) = u(j)
d element-wise with

γ > 1 +
dM
ε
, 0 < ε < ∞,

then y converges toward the set {y | ∥y∥2 ≤ ε}.
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The Properties of the Augmented Control

Idea of proof :
Consider the same Lyapunov-Krasovskii functional:

SΣ = 2
C∑

j=0

S(j) +
C∑

j=0

C∑
ℓ=0

aℓjṽℓ
∫ t

t−Tℓj

y(ℓ)Ty(ℓ)dξ.

By applying the proposed control and the introduced assumptions, it
can be shown that:

ṠΣ ≤ −
C∑

j=0

C∑
ℓ=0

aℓjṽℓe(j,ℓ)Te(j,ℓ) + (dM + (γ − 1)∥y∥2)(dM − (γ − 1)∥y∥2).

If ∥y∥2 ≥ ε and γ > 1 + dM
ε , ṠΣ < 0.

The decrease of SΣ involves that the terms y(j)i tend to 0. The
convergence of y(j)i towards zero persists until ∥y∥2 ≥ ε.

39 46



Case Study



Process Network for Case Study
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An interconnected CRN network was considered consisting of three different
CRNs and the environment. The CRNs in the three subsystems are

CRN1 : R11 : 2C κ31−−→ 2A κ12−−→ 2B, R12 : 2C κ32−−⇀↽−−
κ23

2B.

CRN2 : R2 : 2A κ12−−⇀↽−−
κ21

2B.

CRN3 : R3 : A + C κ45−−⇀↽−−
κ54

B.
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Open loop Response
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Setpoint Control
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Comparison with an MPC Controller
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The Effect of the
Controller Parameter (ζ) Tunning

Recall the control algorithm:

y(j) = ζ
(

Lnc(j) − Lnc(j)∗
)

c(j)
L = y(j) +

1

aLjṽj

( C∑
ℓ=0

aℓjṽℓ
(

y(ℓ)(t − Tℓj)− c(ℓ)(t − Tℓj)
)
− ṽj

(
y(j) − c(j)

))
.
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Control in the Presence of Disturbance

0 50 100

c(1
)  (

m
ol

/m
3
)

0

0.05

0.1

0.15

0.2

A
B
C

0 50 100

c(2
)  (

m
ol

/m
3
)

0

0.05

0.1

0.15

0.2

Time (s)
0 50 100

c(3
)  (

m
ol

/m
3
)

0

0.2

0.4

0.6

0.8

1

0 50 100

c(1
)

L
 (

m
ol

/m
3
)

0

2

4

6

8

10

0 50 100

c(2
)

L
 (

m
ol

/m
3
)

0

2

4

6

8

10

Time (s)
0 50 100

c(3
)

L
 (

m
ol

/m
3
)

0

5

10

15

20

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

c(1
)  (

m
ol

/m
3 )

 

 

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

c(2
)  (

m
ol

/m
3 )

0 10 20 30 40 50
0

0.5

1

c(3
)  (

m
ol

/m
3 )

Time (s)

0 10 20 30 40 50
0

5

10

c(1
)

L
 (

m
ol

/m
3 )

0 10 20 30 40 50
0

5

10

c(2
)

L
 (

m
ol

/m
3 )

0 10 20 30 40 50
0

5

10

15

20

c(3
)

L
 (

m
ol

/m
3 )

Time (s)

A
B
C

45 46



Conclusions



Conclusions

The setpoint control problem of interconnected chemical reactions was
lead back to the synchronization problem of multi-agent systems.
The local controller of each CRN was formulated in function of its
passive output and it can solve the setpoint regulation based only on
information that is available at the corresponding reactor.
A Lyapunov-Krasovskii functional based analysis shows that the
setpoint regulation can be achieved in the presence of constant
transport delay without any knowledge of the delay values.
The resulting control does not depend on the nonlinear terms and on
the reaction rate constants in the model of the addressed CRN
subsystems; only the parameters of the convection network are
necessary for the implementation.
An augmented version of the proposed control was also introduced for
such cases when the CRNs are subject to input disturbance flows.
The performed simulation investigations confirm the efficiency of the
proposed control approach.
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