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Dynamic Networks -
Basic Notions



Networks

A system defined by interconnections (links) and subsystems (nodes) with
similar proprieties.
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Migration networks

Subsystems: Habitats
Interconnections: Two subsystems are connected if migration is possible
between them.
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Models for population dynamics

A system which state rate of change is a function of the inputs and
current state. An example of a mathematical model:

dN
dt = G(N,M), N(0) = N0 ≥ 0

N - local population size
M - migrating population size
dN
dt - population rate of change - the change of the population (dN)
over a time interval (dt)
If the growth function G(N,M) is positive → population increase.
If the growth function G(N,M) is negative → population decrease.
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Control of systems
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Motivation of the Research Work



Depopulation - Romania
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Aging - Romania
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Depopulation - Spain
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Depopulation - USA
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Depopulation - Indonesia
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Some reasons of migration
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Some reasons of migration
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Some reasons of migration
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Some consequences of emigration

Loss of economic dynamism
Basic service offers (health, education, retail, public transport) shrink.
Crop abandonment
Less social involvement
Quality of life decreases
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Some consequences of immigration

Price increases
Overpopulation
More pollution
In the long run, the quality of life could decrease
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The goal of the research

Develop a population dynamics model that is able to catch both the
depopulation phenomena and the migration processes.

Develop a migration-based depopulation avoidance control.
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Depopulation Modeling



Habitat subject to migration

Population rate of change =
Birth rate - Death rate + Migration INflow rate - Migration OUTflow rate
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Habitat subject to migration

dN
dt = G(N) +

∑
j∈NI

dMj
dt −

∑
i∈NO

dMi
dt , N(0) = N0 ≥ 0.
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Classic growth rate model
(without migration)

Describes the exponential population growth:

G = r · N,

r is the Growth (Birth - Death) rate coefficient
If the rate function is always strictly positive, the population of the
habitat increases until the “end of time”.
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Logistic Growth Model
(without migration)

Describes the self-limiting growth of a biological population of a
habitat:

G = r · N ·
(
1− N

K

)
,

K - carrying capacity of a habitat
The rate function is always positive but if N reaches K the population
increase stops.
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Habitat subject to depopulation

At high population size the carrying capacity remains important
At low population size the aging could yield to depopulation
The model should have different behavior at low population size and at
high population size.
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Definition for depopulation

Johnson et al. - Rural Sociology (2019): “There is no consensus on
what constitutes depopulation.”
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Definition for depopulation

Definition: NC ∈ (0,K) is the critical population size if N(t0) < NC
implies that limt→∞N(t) = 0 in case of vanishing immigration.

Definition: A habitat is subject to depopulation if N(t0) < NC.
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Habitat subject to depopulation

Consider a general growth model:

dN
dt = ρ · N · r(N), N(t0) = N0 ≥ 0.

r(N) - per capita growth rate
To capture the depopulation r(N) should be chosen such that

r(N) < 0 if 0 < N < NC,

r(N) > 0 if NC < N < K
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Habitat model subject to depopulation

NC - Critical population size
K - Carrying capacity
The growth function:

G(N) = r · N ·
(

2na · N
n2

g + N2
− 1

)
na = (NC + K)/2 and ng =

√
NCK
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Age dependency of depopulation

Assumption: (Median age vs. critical population size) NC = NC(am) where
NC : (0, aM)→ (0,NM) is a strictly increasing and invertible function.
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Age structured model

McKendrick - Von Foerster model

n = n(a, t)
∂n
∂t +

∂n
∂a + µ(a, t)n(a, t) = 0

The boundary conditions at t = 0 and a = 0 respectively are:

n(0, a) = n0(a),

n(t, 0) =
∫ aM

0

b(a, t)n(t, a)da
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Age pyramid and population dynamics
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Median age

Median age (am): ∫ am

0

n(t, a)da =

∫ aM

am

n(t, a)da.

If the mortality rate under the median age is almost constant
(µ(a, t) = µm(t), as a(t) < am)

∂n
∂t +

∂n
∂a + µ(a, t)n(a, t) = 0 ≈ dN

dt = ρNr(N)
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Migration Modeling



Outlook to the animal world

The long term migration among two neighboring habitats with similar
proprieties depends on the population density difference between them.
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Human Migration

Human migration involves the movement of people from one place to
another with intentions of settling, permanently or temporarily, at a
new location.
Spatial interaction: habitats interact with each other in terms of the
movement of people, services, energy, or information.

31 54



Gravity model of migration

Inspired by the Newton’s law of gravity (F = g m1m2

r2 ):

Gravity model of migration rate:

dM12

dt = µ
Nα

1 Nβ
2

rη ,
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A generalized migration flow model

Migration form habitat i to habitat j:
dMij
dt =

1

γij
Ri(Ni)Aj(Nj)

γij - cost from habitat i to habitat j
Ri(Ni) - repulsiveness of habitat i
Aj(Nj) - attractiveness of habitat j
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Gravity model revisited

The gravity model also falls into this category:
γj = dη

ij/µij

Ri(Ni) = Nβ
i

Aj(Nj) = Nα
j

The model predicts limitless migration inflow increase as the population
sizes increase.
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Improved migration flow model

It can be assumed that the possible emigrants are informed about the
living condition in the destination habitat.
We modify the attractiveness function such that the immigration stops
when the destination habitat reaches its carrying capacity.
This approach assumes that the potential migrants are aware about the
living standards of the destinations.

A(K) = 0,
∂A(K)
∂N ≤ 0.
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Improved migration flow model

A possible implementation of the attractiveness term:

A(N) = N(K− N), Rj(Nj) = N2
j .
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Population dynamics in a habitat

dN
dt = N

ρr(N) +
∑
j∈NI

1

γj
Rj(Nj)A(1)(N)−

∑
i∈NO

1

γi
A(Ni)R(1)(N)


︸ ︷︷ ︸

rM(N,t)

.
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Migration Control



Non-controlled case
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Control Goal

Avoid the depopulation of a habitat
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Control possibilities
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Internal growth control
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Inflow rate control
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Outflow rate control
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Some control possibilities

Diversification in economic sectors
Technological improvements (good Internet connection bandwidth)
Financial support
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Habitat model with controlled migration

dN
dt = N

ρr(N) +
∑
j∈NI

1 + uIj
γj

Rj(Nj)A(1)(N)−
∑
i∈NO

1− uOi
γi

Ai(Ni)R(1)(N)


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Habitat model with controlled migration

dN
dt = N(rM(N, t) + bTu),

where u = (. . . uIj . . . . . . uOi . . .)T
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Control objective

Design the control input vector u such that the population has a
prescribed dynamics if N ≤ NC. The prescribed dynamics is defined by
a per capita rate function rP(N, t).
Let the prescribed population dynamics be:

dN
dt = rP(N, t)N, if N ≤ NC.
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Control effort computation

To each entry of the control vector a priority constants (αi, αj) are
associated as

uIj ← αj

uOi ← αi∑
j∈NI

αj +
∑
i∈NO

αi = 1.

To compute the necessary control effort solve the equation: rP(N, t) = rM(N, t) + bTu (if control is enabled)
1
αj

uIj−u(m)
Ij

u(M)
Ij −u(m)

Ij
= . . . = 1

αi

uOi−u(m)
Oi

u(M)
Oi −u(m)

Oi
.
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Control in the presence of uncertainties

Generally, it cannot be assumed that all the parameters of the growth
rate function and the migration rate functions are perfectly known.
The cumulated effect of the uncertainties is introduced into the model
as a bounded additive term (d):

dN
dt = N

(
rM(N, t) + bTu + d(N, t)

)
.

Assume that
dm < d(N, t) < dM
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Control in the presence of uncertainties

Recall the design equation:

rP(N, t) = rM(N, t) + bTu

Choose the prescribed rate function as:

rP(N, t) = K(NP − N)

Here NP > NC is a prescribed population size.
If KP is chosen such that K(NP − NC) ≥ |dm| the control objective is
achieved.
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Simulation results
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Simulation results - Non-controlled case
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Simulation results - Controlled case

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

P
o

p
u

la
ti
o

n
 S

iz
e

 (
N

)

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

Im
ig

ra
ti
o

n
 (

M
I1

,2
)

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

E
m

ig
ra

ti
o

n
 (

M
O

1
,2

)

0 2 4 6 8 10 12 14 16 18 20

Time

0

5

10

C
o

n
tr

o
l 
v
a

ri
a

b
le

s u
I1,2

u
O1,2

53 54



Conclusions



Conclusions

Mathematical migration models: simplified descriptions of migration
processes.
They should reflect such aspects of migration that are important in the
view of the targeted application.
Based on the model the control parameters (control enable time,
control effort) can be estimated.
“There are no good models but some of them are useful.”
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