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Abstract

The aim of this study is to answer two questions regard-
ing the use of phonetic information for speaker mod-
elling. We formulate answers for (1) what are the dis-
criminative powers of broad phonetic classes for the
task of speaker identification? (2) Are the phonetic
speaker models more suitable for speaker recognition
than standard models?
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1 INTRODUCTION

Speaker recognition is the process of recognising the
speaker on the basis of information obtained from
speech waves. There are two problems included in
speaker recognition, one is speaker identification and
the other is speaker verification. While speaker identifi-
cation is a classification problem performed on a closed
set of speakers, speaker verification is a binary decision,
determining whether an unknown voice is from a par-
ticular enrolled speaker. This paper deals with the prob-
lem of speaker identification. All speaker modelling
techniques investigated in this paper belong to text in-
dependent speaker modelling despite of the fact that in
some models we use phonetic information for creating
the speaker model. Text-independent means that in the
recognition stage the speakers are allowed to utter any
text. Great overview of speaker recognition systems are
[2, 3]

Conventional speaker recognition systems rely only
on spectral features extracted from very short time
segments of speech. This approach fails to capture
longer-range stylistic features of a person’s speaking
behaviour, such as lexical, prosodic, and discourse-
related habits. The use of only acoustic features is
limiting because they suffer direct degradation in the
presence of noise and environmental mismatch. Due
to this, more recent research directions have broad-
ened to incorporate high level features in an effort to
make speaker recognition systems more robust. From
a speech signal we can extract several types of fea-
tures. At the lowest level, acoustic features like Mel
Frequency Cepstral Coefficients can be extracted. At
the next level prosodic features, such as pitch and en-
ergy contours and speaking rate can be extracted. How-

ever these types of features are more difficult to extract,
they are based on theoretical constructs which are inde-
pendent of acoustic noise or channel mismatch. Finally,
it is possible to consider speech in terms of phonemes,
words and sentences. The high level features will not
provide replacement for acoustic features, but if we
combine these high level features to acoustic features
we would be able to improve the accuracy of speaker
recognition systems. An investigation of the use of high
level features is described in [9]. Doddington mod-
elled idiolectal differences among speakers by means of
word n-grams [4]. Discriminative powers of broad pho-
netic classes for speaker recognition were studied in pa-
per [1]. The aim of this paper is to answer two questions
regarding the use of phonetic information for speaker
modelling: 1. What are the discriminative powers of
broad phonetic classes for the task of speaker identifi-
cation? 2. Are the phonetically structured speaker mod-
els more suitable for speaker recognition than standard
models?

This paper is organized as follows. Section 2 de-
scribes the phonetic classes that were considered and
the methodology used for ranking these classes. Sec-
tion 3 is dedicated to the presentation of the phoneti-
cally structured speaker model including the recogni-
tion stage description too. Comparative analysis results
are presented in Section 4. Finally, in Section 5 the
main conclusions of this paper are drawn.

2 PHONETICALLY PURE GMM

Finite mixture is a flexible and powerful probabilistic
tool. Mixtures can also be seen as a class of models
that are able to represent arbitrarily complex probabil-
ity density functions. Gaussian mixture model (GMM)
is the main modelling technique used for speaker recog-
nition. Good adaptation of this model is also known [8].
Given a collection of training vectors, the expectation-
maximisation algorithm can be used to estimate the
model parameters. This algorithm iteratively refines the
GMM parameters in order to monotonically increase
the likelihood of the estimated model for the observed
feature vectors. Unfortunately, this algorithm is very
sensitive to the initial values of the parameters. There
are several techniques to initialize the mean vectors.
Usually a clustering algorithm is used to find good ini-
tial values for the mean vectors.

Margit Antal Phonetic Speaker Recognition



Proceedings of the 7th International Conference COMMUNICATIONS, , June 5-7, 2008, Bucharest,
Romania, pp. 73-76.

For broad phonetic classes we used those recom-
mended in TIMIT corpus, which are the following:
vowels, semivowels, nasals, stops, fricatives, and af-
fricates. Silence and closure parts of stops were ex-
cluded from this study. Because we had a limited train-
ing speech material and there were very few affricates,
we grouped affricates to the fricatives group resulting
in 5 broad phonetic classes. In order to rank the dis-
criminative properties of these broad phonetic classes,
we split the training data for each speaker in 5 sets,
each set containing feature vectors only from one broad
phonetic group. Using these 5 training sets, for every
speaker we trained 5 Gaussian mixture speaker models,
one for each broad phonetic class. The proper number
of Gaussians was experimentally determined for each
broad class. We started by using one Gaussian and in-
creased the number of Gaussians until the identification
rate reached its maximum point for the given phonetic
class. After the training stage we obtained five mod-
els for every speaker. In each test stage we used only
one of these models. For example when we considered
speaker models created using vowels, from the test data
we used all feature vectors belonging to vowels.

3 PHONETICALLY STRUC-
TURED GMM

In the standard GMM based speaker recognition sys-
tem each speaker is modelled by a single GMM. In
our approach, we first divided the speech in five broad
phonetic classes: vowels, semivowels, nasals, stops and
fricatives with affricates. Then, for each broad phonetic
class we collected the speech data and trained a GMM
for this part of speech. Training ended by obtaining a
separate GMM model for each broad phonetic class of
a speaker.

A weight factor to each broad phonetic class GMM
can be attached. These weights can be set to be equal
or can be used the speaker discriminative power of
broad classes to initialize them. Similar studies were
reported in [5, 7, 10], however in these studies the num-
ber of groups in the structured GMM were selected to
model more narrow phonetic groups. The majority of
research papers focus on creating speaker models from
the speaker specific phoneme models. These speaker
specific phoneme models are adapted from speaker in-
dependent phoneme models. Our approach is differ-
ent: we limit ourselves to model strictly the broad pho-
netic classes of a given speaker. We will denote this
new model as suggested by [5] Phonetically Structured
Gaussian Mixture Model (PSGMM).

The probability of a feature vector x in a PSGMM
will be computed using the modified formula

p(x|λPSGMM ) =
n∑
i=1

wipi(x) (1)

where wi, i = 1, n are the weight factors attached
to the broad phonetic groups and pi(x) represents the
probability of x in the GMM attached to the ith broad

Broad class Training Test
V 9.66 2.27
W 2.38 0.47
N 1.34 0.38
F 3.48 1.04
S 1.43 0.35

Table 1: Average length of broad phonetic training and
test material; V-vowels, W-semivowels, N-nasals, F-
Fricatives and affricates, S-stops

phonetic group. Let us suppose that the ith broad pho-
netic group is modelled by a GMM having ni Gaussian
components. Then pi(x) will be computed by

pi(x) =
ni∑
k=1

cikbik(x),
ni∑
k=1

cik = 1 (2)

and bik is a Gaussian density function defined by equa-
tion

bi(x) =
1

(2π)d/2|Σi|1/2
e−

1
2 (x−µi)

T Σ−1
i

(x−µi) (3)

The difference between the set of weights {wi|i =
1, n} and {cik|k = 1, ni} is that the latter are computed
by the EM algorithm and the former can be set by us.
In the next section we present two methods for setting
these weights.

We should note that there is no need for phonetic
labelling during recognition. Each set of feature vec-
tor is scored against each broad class GMMs and the
weighted sum of these probabilities given by equation
1 is used as the probability in the given speaker model.

4 EXPERIMENTS

4.1 Corpus parameters and feature ex-
traction

All the experiments were conducted on the TIMIT
speech corpus, using all 630 speakers for speaker iden-
tification. The corpus contains 10 utterances from ev-
ery speaker, each utterance having a unique identifier.
There are three types of sentences denoted as SA, SX
and SI sentences. Altogether there are 2 SA, 5 SX and
3 SI sentences. For training we used 8 sentences from
each speaker (2 SA, 3 SX, 3 SI; 24.5s on average ) and
for test the remaining 2 sentences (2 SX; 6.06s on aver-
age).

Table 1 shows the average training and test data for
each broad phonetic group, which were used in the ex-
periments. In case of phonetically pure GMM, we used
only the segments belonging to a broad class both for
training and test.

Before segmenting the signal into frames, a FIR filter
with the transfer function H(z) = 1− az−1, a = 0.97
was applied. The analysis of speech signal was done
locally by the application of a window whose duration
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Broad class #mixt. Id.rate Weight
V 8 95.39% 0.37
N 1 70.31% 0.27
F 4 44.60% 0.16
W 4 41.74% 0.16
S 4 10.47% 0.04

Table 2: Speaker identification rates for 630 speakers
using phonetically pure models (PPGMM) and the cor-
responding set of weights

in time is shorter than the whole signal. This window
is first applied to the beginning of the signal, and then
moved further and so on until the end of the signal is
reached. For the length of the window we used 32ms
with 22ms of overlapping between consecutive frames.
Each frame was multiplied by a Hamming window in
order to taper the original signal on the sides and thus
reduce the side effect. After these steps we extracted
cepstral parameters from each frame. MFCC cepstral
features were used in all the experiments. (The detailed
description of the extraction of this feature set can be
found in [2, 11]).

4.2 Phonetically pure GMM
The aim of these experiments is to rank broad phonetic
classes according to their speaker discriminative power.
The optimal number of mixtures for each broad pho-
netic class was selected carefully. We started to model
the group using one Gaussian and increased the num-
ber of Gaussians until the identification rate reached its
maximum point. Table 2 summarizes the optimal num-
ber of Gaussians and their identification rates.

The last column in table 2 represents the normalized
discriminative weight factors, which will be used for
phonetically structured GMMs. The vowels were found
to be the best broad phonetic class for speaker recogni-
tion. We have to note that the vowels represent approx-
imately 40% of the speech corpus. The second best was
the nasals class, despite of the limited amount of train-
ing and test data. The phonemes belonging to this class
capture well the nasal cavity parameters, which demon-
strated their speaker discriminative properties.

4.3 Phonetically structured GMM
In these experiments we used a total number of 6 Gaus-
sians for each speaker model. In the case of phonet-
ically structured models, vowels were modelled by 2
Gaussians and each of the other broad phonetic class
by a single Gaussian. We measured identification rates
for using both test parts, 2 sentences, which are alto-
gether 6s on average, and identification rates for only
one sentence, which is 3s on average. Because we had
2 sentences in the test, for the 3s test, we run the iden-
tification twice and computed the average identification
rate, which is shown in the third column of table 3.
Each row of the table contains the results for a certain
type of speaker modelling. The first row is for the stan-

Model #mixt. Id.rate 3s Id.rate 6s
GMM 6 93.02% 98.58%

PSGMM1 6 92.14% 98.74%
PSGMM2 6 92.06% 98.16%

Table 3: Speaker identification rates using PSGMM

Model #mixt. Id.rate 6s
GMM 5 97.47%

PIGMM 5 98.89%

Table 4: Speaker identification rates using usual and
phonetic initialisation

dard GMM. In the second row the results are obtained
by using phonetically structured speaker models with
equal weight coefficients in formula 1. The last row
differs from the second one by the weight coefficients;
in this case we used those obtained from broad phonetic
class ranking, from the last column of table 2. Interest-
ingly, using equal weights for each broad phonetic class
produces identification performance slightly better than
using fine tuned weights. The phonetically structured
models did not perform better or worse than the stan-
dard GMM using the same number of Gaussians.

4.4 GMM models with phonetic initialisa-
tion

In all the previously presented experiments Gaussian
mixture parameters (weights, mean vectors, covariance
matrixes) were computed using the expectation max-
imisation algorithm (EM). This iterative technique is
very sensitive to the initial values of the parameters;
therefore we used the k-means algorithm to find a set of
good values for the mean vectors. Covariance matrixes
were initialised with the identity matrix, and weights
were initialised with equal values satisfying the con-
straint (sums to one).

In this subsection we present a new set of experi-
ments, where we changed the initialisation step of the
EM algorithm. Instead of using the centroids computed
by the k-means algorithm, we used the broad phonetic
centroids for the mean vectors’ initialisation. These
broad phonetic centroids were obtained by classifying
each feature vector into one broad class and comput-
ing the centroids of these broad classes. In this step we
used the phonetic information contained in the speech
corpus. We denote this type of model by Phoneti-
cally Initialised Gaussian Mixture Models (PIGMM).
Of course, this type of initialisation is suitable for mod-
els whose number of mixtures coincides with the num-
ber of broad phonetic groups. Surprisingly this type of
initialisation proved to be very effective and increased
the overall speaker identification rate. As we mentioned
earlier we grouped the affricates to the fricatives and in
this way we had 5 broad classes instead of 6. Table 4
presents the identification rates for all the 630 speakers
of the TIMIT corpus using 5 mixtures using both the
usual and the phonetic initialisation.
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5 CONCLUSION

In this paper we presented several modifications to the
standard GMM model trying to improve the speaker
identification rates for a closed set of speakers. The
first modification was to use only a suitable broad pho-
netic class. We proved experimentally that some broad
phonetic classes are more speaker specific than others.
For example using only vowels we obtained a very high
identification rate and a very good result for fricatives
although these are not very frequent in usual speech.
The second modification was to combine the phonet-
ically pure speaker models in order to achive a better
identification rate. We tried two sets of weights, one
uniform and one fine-tuned set of weights but these
modifications did not improve the speaker identifica-
tion rate of the system. The third modification was
one affecting the initialisation step of the EM algorithm,
namely using the broad phonetic centroids for the ini-
tialisation of the mean vectors. This proved to be very
effective and increased the identification rate compar-
ing to the same complexity GMM model.

Experiments show that it is possible to identify
speakers using only a suitably selected broad phonetic
class, such as vowels. The answer for the first question
was given in subsection 4.2. We succeeded in rank-
ing the broad phonetic classes due to their speaker dis-
criminative power. Vowels and nasals produced very
high identification rates. This result can be used by the
designers of speech materials for speaker identification
systems. The second question should be answered very
carefully. Based on our experiments we can state that
the broad phonetically structured speaker models are
not better than standard ones. We should remark that
the phonetic information can be used in various ways.
Speaker models produced by the phonetic initialisation
were more accurate than models produced by the stan-
dard initialisation. So we can conclude that using this
limited amount of speech material, we obtained better
models not by creating separate models for the different
broad phonetic groups but by the more special initiali-
sation of the model parameters.
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