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Abstract—Recently a new set consisting of six information
theory features was proposed for on-line signature verification by
Rosso, Ospina and Frery. The proposed features were evaluated
on the MCYT-100 on-line signature database resulting in the
best performance ever measured on that dataset. In this paper
we repeat their measurements and show that their result is
erroneous. In addition, we evaluate the performance of the same
on-line signature verification system using exactly the same num-
ber of state-of-the-art features. State-of-the-art features always
outperform the information theory related features, regardless
of the classification method used.
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I. INTRODUCTION

Handwritten signatures have been used in personal verifi-
cation for centuries. Due to the proliferation of touchscreen
mobile devices, the capture and the transmission of the signa-
ture is now available from anywhere. This in turn gives new
dynamics to signature biometrics research.

Signature verification systems are divided into offline and
on-line systems. While offline systems use the image of
the signature, on-line systems use information related to the
dynamics of the signature. This paper deals with on-line
systems.

On-line signature verification systems can use three types
of feature: local, global, and segmental[1]. Local features are
extracted for each sample point of the signature (e.g. point-
wise velocities). Global features are based on all sample points
of the signature (e.g. duration or average velocity). In the case
of segmental features the signature is divided into segments
and one feature is extracted from each segment. This paper
deals with global features.

More than 150 different global features have been proposed
by several research papers. Fierrez-Aguilar, Nanni, Penalba,
Ortega-Garcia and Maltoni [2] proposed 100 distinct global
features. The set of features was sorted by individual discrim-
inative power. Sae-Bae and Memon represented a signature
as a set of histograms [3]. Histograms were derived from x-y
trajectories, speed, angles, pressure and their derivatives.

Recently Rosso, Ospina and Frery [4] proposed time causal
information theory features. They proposed features using

Shannon entropy, statistical complexity, and the Fisher infor-
mation evaluated over the Bandt and Pompe symbolization
[5] of the horizontal and vertical coordinates of signatures.
The authors claim that the use of these six information theory
features and a one-class support vector classifier results in
better performance than the use of state-of-the-art on-line
systems that employ higher-dimensional feature spaces.

A great amount of research has been conducted in feature
extraction and selection for on-line signature verification sys-
tems [6], [7], [8]. Good features are those having high con-
sistency. Consistency as defined by Lei and Govindaraju [9]
means that the values extracted from genuine signatures should
be close to each other while the distances between genuine
and forged features should be large. Lei and Govindaraju [9]
presented a consistency model using a distance based measure.
Both local and global features were examined. The authors
conclude that the most consistent features are the x and y
coordinates, the speed of writing and the angle with the x-
axis.

In this paper we present our experiments using the six
features proposed by Rosso, Ospina and Frery and show that
their result is erroneous. The correct result is about 20%
instead of the presented 0.19% equal error rate (EER) achieved
for 5 training samples. We compare evaluation results using
their six features with the same system using six state-of-
the-art features. Finally we present evaluations related to the
consistency of the used features. All data related to this paper
are available on-line.1

Table I shows the best performance results reported on
MCYT-100 dataset using 5 signatures for training.

The rest of this paper is organized as follows. Section
II describes the feature extraction, feature selection and the
anomaly detectors employed in this study. Experiments and
results are presented in section III. The final section concludes
the paper.

1http://mobio.ms.sapientia.ro/mcyt.html



TABLE I
PERFORMANCE EVALUATIONS (ERR %) REPORTED ON THE MCYT-100

DATASET USING 5 SIGNATURES FOR TRAINING. RF - RANDOM FORGERIES.
SF - SKILLED FORGERIES.

Author Year RF SF Description
Fierrez [2] 2005 0.24 2.12 Global (Parzen) and

local (HMM) experts fusion
Pascual [10] 2008 0.29 1.23 Local (DTW-based) system
Rosso [4] 2016 0.19 Global system (one-class SVM)

information theory features (6)

TABLE II
GLOBAL FEATURES. #FEAT: NUMBER OF FEATURES

Name #feat
Duration 1
Average velocity 1
Average pressure 1
Average x velocity 1
Average y velocity 1
Sign changes of X1Y 1X2Y 2P 1P 2 6
Histogram of Θ sequence 8
Total 19

II. METHODS

A. Feature extraction

1) State-of-the-art global features: We computed position-,
pressure- and time-based features [2] [11], such as duration,
average, horizontal and vertical velocities, sign changes of dif-
ferent time series computed from the raw data, and histogram-
based features. Several histograms were proposed by Sae-
Bae and Memon [3]. We used some features extracted from
the angles’ histogram. The detailed description of the feature
extraction process can be found in an earlier paper written by
the authors [12].

Let X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn} be
the x, y coordinates of a signature. We denote by P =
{p1, p2, . . . pn} the pressure measured in each touch point.
First- and second-order derivatives of these sequences were
computed as follows: X1 = {x1i |x1i = xi+1 − xi}, Y 1 =
{y1i |y1i = yi+1 − yi}, P 1 = {p1i |p1i = pi} where i =
1, 2, . . . , n − 1, and X2 = {x2i |x2i = x1i+1 − x1i }, Y 2 =
{y2i |y2i = y1i+1 − y1i }, P 2 = {p2i |p2i = p1i+1 − p1i }, i =
1, 2, . . . , n − 2. Angles Θ1

i = tan2−1(y1i , x
1
i ), i = 1, n− 1,

were computed using the tan2−1 trigonometric function which
is a variation of the standard arctan function.

The state-of-the-art features used in our experiments are
presented in Table II. Typically these features have very
different dynamic ranges. Therefore, these features were nor-
malized in the subset used to train the models (separately for
each subject) in order to meet real systems requirements. We
applied standard min-max normalization:

f
′

i =
fi −mini

maxi −mini
, i = 1, . . . , D, (1)

where fi is the ith feature, mini and maxi are the smallest,
respectively the largest value of the ith feature across the
training set, and D is the number of features.

2) Information theory features: Rosso, Ospina and Frery
[4] proposed the use of the following time causal quantifiers
based on information theory for handwritten signatures: nor-
malized Shannon entropy (H), permutation statistical complex-
ity (C) and permutation Fisher information measure (F). They
extracted these three features both from x and y coordinates
of signatures resulting in 6 features: Hx, Hy, Cx, Cy, Fx, Fy .
Detailed description of these features is presented in their
paper [4].

B. Feature selection

Feature selection was applied in the case of the 19 state-of-
the-art features presented earlier in order to select 6 features.

Though signature recognition is a one-class problem, the
existence of forgery samples in the MCYT-100 dataset allows
us to formulate the feature selection problem in a similar way
to a two-class classification scheme.

Consequently for each user of the dataset a two class subset
was created, containing the genuine and the forgery samples
of the user (25 genuine and 25 forgery samples). For all
of these subsets, feature selection algorithms were applied
separately, yielding as a result the most relevant features
characterizing the user according to the selection algorithm.
Finally, a majority vote was applied on all per user feature
sets in order to select 6 features.

Feature selection methods were applied by using the Weka
data mining framework. In the case of the feature set used
in this study, a wrapper method was applied as a feature
evaluation method (the WrapperSubsetEval method with the
Random Forests classifier, 100 trees). As for search method the
BestFirst algorithm was used with a forward search strategy
starting from feature number 1: duration. Numerous previous
tests confirmed that duration is one of the most relevant
features that characterizes the user. The search termination
parameter of consecutive non improvement nodes was set to
5.

Running the search for each user resulted in distinct sets
of best performing features, next the first k features were
selected from each per user feature set. Finally 6 features
were selected from the resulting global set based on a majority
vote. The feature set rf369 resulted, containing the same values
irrespective of k=3, 6, 9.

It is worth mentioning that, by using other wrapper or
information gain based feature selection methods, various 6
features set could be selected with classification results similar
to rf369. In all of these sets, duration and average velocity
were present as high ranked features, completed with features
representing other velocities, pressure and sign changes.

C. Feature consistency

We used a simple feature consistency measure proposed by
Lee, Berger and Aviczer [13]. This measure is defined as:

di(s) =
|mi(genuine)−mi(forgery)|√
σ2
i (genuine) + σ2

i (forgery)
, (2)



where di(s) denotes the consistency of feature i for the
subject s. mi(genuine) is the sample mean computed for
feature i in the case of genuine signatures and mi(forgery)
is the sample mean for the same feature in the case of forged
signatures. σ2

i (genuine) and σ2
i (forgery) are the sample

variations of feature i for genuine and forged signatures.
Consistency was computed for each feature using the genuine
and forged signatures of each subject. This resulted in a set
of N consistencies for each feature, where N is the number
of subjects. Therefore, we report the mean and its standard
deviation over subjects.

D. Anomaly detectors

Several anomaly detectors were implemented for template
creation and matching. The Euclidean, the Manhattan and the
kNN anomaly detectors have been described in an earlier paper
of the authors [12] and were used for the evaluation of the
DooDB on-line signature dataset [14]. Each anomaly detector
uses a specific template and score computation (see below).
Dissimilarity scores (Dscore) were transformed into similarity
scores (Sscore) by using formula 3.

Sscore =
1

1 +Dscore
(3)

Training for the Euclidean anomaly-detection algorithm
consists of the calculation of the mean feature vector of the
training samples. In the test phase the detector calculates the
Euclidean distance between the mean feature vector and the
feature vector extracted from the test sample. In the case of
the Manhattan detector the Manhattan distance is used in the
test phase.

The k-nearest neighbour (kNN) detector is one of the
simplest anomaly detectors which directly uses the feature
vectors extracted from the training samples without any other
computations. Testing means the calculation of the Euclidean
distance between each of the training feature vectors and the
feature vector extracted from test samples. Having more than
one distance, the anomaly score is calculated as the average
of the distances to the k nearest training samples.

One-Class Support Vector classification was performed with
R (The R Project for Statistical Computing) by using the
interface for LIBSVM [15] from R package e1071. Tuning
LIBSVM parameters in a real signature recognition application
is difficult due to the small number of positive and the lack
of negative samples. Though one could find strategies for this
task by dividing the user set, we chose to run LIBSVM with
parameters similar to [4], nu = 0.1 and gamma = 0.05
respectively. The classifier decision values returned by the R
interface were used as scores, and error rates were calculated
with the ROCR package from R.

E. Performance metrics

Two types of EERs were computed: (i) using a global or
universal threshold for all subjects (EERg) and (ii) using user-
dependent thresholds (EERu). In the latter case we computed
the EER for each user and report the mean and variance of

TABLE III
INFORMATION THEORY AND STATE-OF-THE-ART FEATURE SETS EACH

HAVING EXACTLY 6 FEATURES.

Inf. theory feat. State-of-the-art feat.
(rosso6) (feat369)
Hx Duration
Hy Average velocity
Cx Average pressure
Cy Average x velocity
Fx Average y velocity
Fy Sign changes of X1

these values. In addition, performance is reported in terms of
Receiver Operating Characteristics (ROC) curve.

III. EXPERIMENTAL RESULTS

In this section, experiments to evaluate the efficacy of
the two feature sets are described and signature verification
performances are reported.

A. Dataset and evaluation protocol

All the experiments presented in this study were carried out
on the freely available MCYT on-line signature dataset (specif-
ically on the MCYT-100 subset) published by Ortega-Garcia
[16]. This subset contains - for each signatory - 25 genuine
and 25 forged signatures. The signatures were acquired on
a WACOM digitizer tablet with 100 Hz sampling frequency.
We trained the system with the first 5, 10, and 15 genuine
signatures per subject. The remaining genuine signatures and
the 25 available forged signatures were used for evaluation in
the skilled forgeries case. As for the random forgeries case we
used the same genuine signatures for templates and the first
genuine signatures from each other user as forged signatures
(resulting in 99 signatures for each subject).

B. Verification results

Table III presents the two evaluated feature sets. Two
types of evaluations were conducted: skilled- and random
forgery cases. The corresponding verification performances
are reported in Tables IV and V. In both cases four anomaly
detectors were used and the evaluations were repeated three
times using 5, 10 and 15 genuine signatures for template
creation. In each case the state-of-the-art features proved to
be significantly better than the information theory features.

Verification performance results for the two feature sets and
skilled forgery case are depicted in the form of ROC plots in
Figures 1a and 1b.

C. Feature consistency

Consistency (means and standard deviations – as presented
in section II-C) of the employed features are presented in
Table VI. The table presents the consistencies in decreasing
order of mean consistency value. However, a good feature
should have high mean and low standard deviation (in order
to be stable across subjects). Although the information theory
features have high mean consistency values, they also have
high standard deviations. The low efficacy of these features
was confirmed by the high EERs (see Table IV).



(a) 6 information theory features (b) 6 state-of-the-art features

Fig. 1. ROC curves for Euclidean anomaly detector with 5, 10 and 15 training samples evaluated on the two feature sets (skilled forgeries case). The EERs
are computed using global thresholds (EERg).

TABLE V
VERIFICATION PERFORMANCE IN TERMS OF EERg AND EERu USING

THE TWO FEATURE SETS. RANDOM FORGERIES CASE. [%]

Inf. theory feat. State-of-the-art feat.
Detector EERg EERu (stdev) EERg EERu (stdev)

Enrollment: 5 samples
EUCL. 19.11 16.24 (8.97) 10.11 4.54 (5.08)
MANH. 18.89 16.75 (9.31) 9.04 4.18 (4.80)
KNN 19.27 16.45 (9.77) 9.38 4.45 (4.74)
LIBSVM 23.20 16.40 (8.90) 17.70 4.40 (5.10)

Enrollment: 10 samples
EUCL. 16.91 15.03 (8.66) 4.63 2.41 (3.29)
MANH. 17.32 15.69 (8.83) 4.76 2.43 (3.32)
KNN 20.58 18.16 (11.55) 5.11 3.03 (3.57)
LIBSVM 22.50 15.30 (8.30) 12.50 2.40 (3.40)

Enrollment: 15 samples
EUCL. 15.90 14.47 (8.51) 4.17 2.03 (3.82)
MANH. 16.30 15.03 (9.03) 4.29 1.87 (3.29)
KNN 18.01 14.96 (9.44) 4.85 2.48 (4.57)
LIBSVM 30.20 14.50 (8.00) 28.40 2.10 (3.80)

TABLE VI
FEATURE CONSISTENCY

feature mean stdev
Fy 1.0745 0.6497
Fx 1.0272 0.6270
Cy 1.0243 0.5800
Cx 0.9962 0.5986
Hy 0.9786 0.5179
Hx 0.9527 0.5335
Duration 0.4219 0.4359
Sign changes of X1 0.3095 0.2277
Average y velocity 0.3008 0.2403
Average velocity 0.3002 0.2186
Average x velocity 0.2870 0.2469
Average pressure 0.2740 0.1908

TABLE IV
VERIFICATION PERFORMANCE IN TERMS OF EERg AND EERu USING

THE TWO FEATURE SETS. SKILLED FORGERIES CASE. [%]

Inf. theory feat. State-of-the-art feat.
Detector EERg EERu (stdev) EERg EERu (stdev)

Enrollment: 5 samples
EUCL. 22.93 20.32 (12.83) 14.76 7.90 (7.35)
MANH. 22.54 20.59 (13.48) 14.23 7.96 (6.05)
KNN 24.30 21.15 (14.09) 14.59 8.54 (7.96)
LIBSVM 32.80 20.30 (12.80) 31.80 8.80 (9.30)

Enrollment: 10 samples
EUCL. 21.30 19.64 (12.32) 8.49 5.45 (6.71)
MANH. 22.31 19.71 (12.24) 8.64 5.51 (6.67)
KNN 25.10 21.83 (14.47) 9.07 6.23 (7.64)
LIBSVM 33.70 19.00 (11.90) 27.10 5.60 (6.50)

Enrollment: 15 samples
EUCL. 21.38 18.47 (12.21) 7.54 4.76 (6.73)
MANH. 20.96 18.90 (12.42) 7.95 4.50 (6.70)
KNN 22.56 19.86 (13.93) 8.42 5.50 (8.40)
LIBSVM 38.70 18.00 (12.10) 33.80 4.70 (7.10)

IV. CONCLUSION

In this study we repeated the measurements presented by
Rosso, Ospina and Frery [4], and showed that the performance
obtained by their information theory features is erroneous.
The same evaluation was performed for the same number
of features, in this case using state-of-the-art features. State-
of-the-art features always outperform the information theory
related features, regardless of the classification method used.
Consistency analysis of the used features was also presented.
However, the information theory features are not the best
choice for signature verification, although they might be
proven useful in signature quality evaluation.

ACKNOWLEDGMENT

The Biometrics Research Lab (ATVS), Universidad Au-
tonoma de Madrid, provided the MCYT-100 signature corpus



employed in this work. The information theory related features
were provided by Raydonal Ospina. The work of Margit Antal
was supported by a Domus Hungarica research grant, contract
number 5634/1/2016/HTMT.

REFERENCES

[1] J. Richiardi, H. Ketabdar, and A. Drygajlo, “Local and global feature
selection for on-line signature verification,” in Eighth International
Conference on Document Analysis and Recognition (ICDAR’05), Aug
2005, pp. 625–629 Vol. 2.

[2] J. Fierrez-Aguilar, L. Nanni, J. Lopez-Peñalba, J. Ortega-Garcia, and
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