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b Budapest University of Technology and Economics, Department of Control Engineering and Information Technology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary

a r t i c l e i n f o

Article history:
Received 18 December 2009
Received in revised form 14 June 2010
Accepted 3 August 2010

Keywords:
Image segmentation
Intensity inhomogeneity
Magnetic resonance imaging
Fuzzy c-means clustering
Hybrid c-means clustering
Context dependent filter
Morphological operations

a b s t r a c t

Medical image segmentation and registration problems based on magnetic resonance imaging are fre-
quently disturbed by the intensity inhomogeneity or intensity non-uniformity (INU) of the observed
images. Most compensation techniques have serious difficulties at high amplitudes of INU. This study
proposes a multiple stage hybrid c-means clustering approach to the estimation and compensation of
INU, by modeling it as a slowly varying additive or multiplicative noise. The slowly varying behavior of the
estimated inhomogeneity field is assured by a context sensitive smoothing filter based on a morphological
criterion. The qualitative and quantitative evaluation using 2-D synthetic phantoms and real T1-weighted
MR images place the proposed methodology among the most accurate segmentation techniques in the
presence of high-magnitude inhomogeneity.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The segmentation of an image represents the separation of
its pixels into non-overlapping, consistent regions, which appear
homogenous with respect to some criteria concerning color and/or
texture. MR brain image segmentation generally aims at separat-
ing white matter (WM) from gray matter (GM) and cerebrospinal
fluid (CSF), which are usually distinguished by their intensity.
The segmentation of MR images can support the qualitative and
quantitative identification of various anatomical structures, thus
providing important services to intelligent automated diagnosis
systems.

Among the currently available medical imaging techniques,
magnetic resonance imaging (MRI) has a relatively high resolu-
tion and good contrast, but it also suffers from three considerable
obstacles: high-frequency noise (mixture of Gaussian and impulse
noises), partial volume effect (pixels containing at least two types
of tissues), and intensity inhomogeneity [1]. This latter one, also
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known as intensity non-uniformity (or INU artefact), manifests
as a spatially slowly varying function that makes pixels belong-
ing to the same tissue be observed having different intensities.
In order to provide a correct segmentation of INU-contaminated
MR images, this artefact needs to be modeled and compen-
sated.

Inhomogeneities are generally categorized by their origin. Those
related to the imaging device have efficient compensation and cal-
ibration methods like the usage of a uniform phantom to produce
prior information [2]. On the other hand, INU artefacts related to
the shape, position, structure and orientation of the patient [3], are
much more difficult to handle [4].

Reported INU compensation methods use several different
approaches. Early compensation methods like homomorphic fil-
tering [5,6] were built upon the theoretical assumption that
the frequency spectra of the image structures and of the INU
artefact are not overlapping each other. Surface fitting methods
engage a surface model (e.g. polynomial or B-spline) to approx-
imate the inhomogeneity according to certain image features,
which can be intensity based [7] or gradient based [8,9]. Seg-
mentation based methods usually embed the INU compensation
into an image segmentation process. These approaches imple-
ment maximum likelihood estimation [10,11], Markov random
fields [12,13], fuzzy c-means clustering [1,14,15], or nonparametric
estimation [16]. Further, histogram based INU compensation pro-
cedures involve high-frequency maximization [17], information
maximization [18–20], or histogram matching [21,22].
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One of the most widely used INU compensation methods is the
adaptation of the fuzzy c-means (FCM) clustering algorithm to iter-
atively approximate the INU as a smoothly varying bias or gain
field. In this order, Pham and Prince introduced a modified objec-
tive function producing bias field estimation and containing extra
terms that force this artefact vary smoothly [15]. They also pro-
vided a multigrid technique to speed up the computationally heavy
algorithm, but even this way, their algorithm performs slowly. The
same objective function was reached from a Bayesian approach in
[23]. Liew and Hong created a log bias field estimation technique
that models the INU with smoothing B-spline surfaces [24]. Ahmed
et al. [25] established a regularization operator that allowed the
labeling of a voxel to be influenced by its immediate neighbors.
This approach reduced some of the complexity of its ancestors, but
the zero gradient condition that was used for bias field estima-
tion leads to several misclassifications. Siyal and Yu [1] provided a
mean spread filtering method to smoothen the estimated bias field
in every cycle of the FCM algorithm, thus reducing the amount of
necessary computations, but the result of the segmentation is not
deterministic due to the nature of the smoothing filter.

The theory of c-means clustering had a long evolution and it
is still improving. Initially, there was the hard c-means algorithm
(HCM) [26], which used the conventional bivalent logic to par-
tition the input data, meaning that in any iteration, one item is
assigned to exactly one class with 100% probability. HCM con-
verges quickly, but often crashes and even if it doesn’t, it gives
a lot of misclassifications, due to its sensitivity to noise. A major
improvement of the partition quality was produced by the fuzzy
c-means clustering [27], but it hardly changed anything in the sen-
sitivity to outliers. An efficient elimination of this latter problem
was provided by the possibilistic c-means algorithm (PCM) [28].
This approach dropped the probabilistic constraint of the partition
matrix: the degree to which an item belongs to a class does not
anymore represent a probability. Instead of that, the possibilistic
partition stores the typicality or compatibility of elements with dif-
ferent classes. Although the sensitivity to noises got an instant and
efficient solution, some new problems emerged. Pure possibilistic
c-means clustering, because of the excessive independency of its
cluster prototypes, often comes up with coincident clusters [29].
This problem received several solutions afterwards, the most recent
and most robust one being the fuzzy – possibilistic c-means hybrid
given in [30]. On the other hand, the suppressed fuzzy c-means
algorithm (s-FCM) [31], and its improved, optimal version (Os-FCM)
[32] showed us some beneficial effects of mixing the fuzzy c-means
clustering model with the hard one, at least from the point of view
of execution speed.

All these clustering techniques suffer from sensitivity to high-
amplitude INU artefacts: when the intensities of different tissue
types overlap, segmentation accuracy falls, as the clustering algo-
rithm is unable to correctly compensate the INU. In order to handle
this problem, in this paper we propose a multi-stage c-means
clustering based technique for bias- or gain field estimation of
the inhomogeneity. Furthermore, we present two context sensi-
tive filtering techniques to improve the segmentation accuracy.
The prefiltering algorithm serves the elimination of high-frequency
noises before segmentation, while the morphological criterion
based smoothing filter is intended to guarantee the slow variation
of the estimated INU artefact. The proposed methods are tested
using real MR images and artificial phantoms.

The rest of the paper is organized as follows. Section 2 describes
the background works based on fuzzy c-means clustering. Section
3 presents the details on the proposed filtering techniques and the
multi-stage hybrid c-means clustering based bias- and gain field
estimation approaches. Section 4 provides a qualitative and quan-
titative analysis and short discussion of segmentation results. In
Section 5 the conclusions are formulated.

2. Background works

2.1. The evolution of c-means clustering models

After three decades of fruitful history, FCM is still one of the
most popular clustering methods, due to its partition quality and
its easily understandable and implementable alternating optimiza-
tion (AO) solution. This is happening in spite of the facts that FCM
was found sensitive to outliers [29], and sometimes it converges
quite slowly [31]. The sensitivity to outliers was avoided by relax-
ing the probabilistic constraint. After an early solution given by
Davé [33] (which later was further developed by Menard et al.
[34]), Krishnapuram and Keller came up with the possibilistic c-
means algorithm (PCM), which distributes the partition matrix
elements based on statistical rules. The degrees of memberships
are not anymore probabilities. Instead of that, they describe the
compatibility of input data with different clusters. The compatibil-
ity of item c with cluster number i only depends on the distance
between them, and the previously established penalty term �i. The
possibilistic approach represented an instant solution for the sensi-
tivity to outliers, but several new problems emerged. The fact that
PCM distributes typicality values independently of each other often
leads to coincident clusters [29].

In order to avoid the coincidence of possibilistic cluster pro-
totypes, several solutions have been proposed [35,36], which
culminated in the so-called possibilistic-fuzzy c-means (PFCM)
clustering model by Pal et al. [30]. After a long series of tests
using standard data sets, the authors found PFCM a reliable robust
clustering scheme, and recommended giving the possibilistic com-
ponent a higher weight within the mixture and setting the fuzzy
exponent m greater than the possibilistic exponent p.

On the other hand, Fan et al. [31] introduced the suppressed
FCM algorithm (s-FCM), having the intention of combining the
quicker convergence of HCM with the accurate partitioning prop-
erties of FCM. They added an extra computation step into the FCM
iteration, which created a competition among clusters: after per-
forming the computation of fuzzy memberships, low membership
values are suppressed via multiplication with a previously defined
suppression rate ˛ ∈ [0,1], and the largest membership is raised
by swallowing all the suppressed parts of the low memberships,
retaining the probabilistic constraint. Cluster prototypes are then
updated with FCM’s formula using the modified fuzzy member-
ships. This algorithm is able to reduce FCM’s computational load,
and with a carefully chosen suppression rate and intelligent dis-
tribution of initial cluster prototype, it can reliably achieve fine
partitions. Although s-FCM is not an optimal algorithm [32], it had
a considerable contribution to quick c-means clustering based par-
titioning.

2.2. INU compensation models

The conventional c-means clustering models classify the set of
data {xk}, which was recorded among ideal circumstances, con-
taining no noise. However, in the real case, the observed data {yk}
differs from the actual one {xk}: there are impulse and Gaussian
noises that can be handled with a smart prefiltering, and there
is the intensity non-uniformity (INU) artefact, which needs to be
compensated during segmentation.

Literature recommends three different data variation models
for intensity inhomogeneity. The bias field model considers INU as
an additive noise: for each pixel k we have yk = xk + bk, where bk
represents the bias value at pixel k [1,15,25]. The gain field model
describes INU as a multiplicative field, having a gain value gk for
each pixel k, such that yk = gkxk [37]. The so-called log bias approach
in fact is a gain field estimation reduced to bias computation using
the logarithmic formula log yk = log gk + log xk [24].
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Regardless of the applied compensation model, the variation of
the intensity between neighbor pixels has to be slow. Zero gradient
conditions derived from the quadratic objective functions do not
produce such estimations. Consequently, a smoothing operation is
necessary to assure this slow variation of the estimated bias or gain
field.

3. Materials and methods

3.1. The proposed hybrid clustering model

In this section we propose a hybrid c-means clustering model,
which consists of a linear combination of the hard, fuzzy, and pos-
sibilistic criteria. The cost function of such a model is:

Jhyb = ˇ˛JFCM + (1 − ˇ)JPCM + ˇ(1 − ˛)JHCM, (1)

or more explicitly

Jhyb =
n∑

k=1

c∑
i=1

�ik||xk − vi||2 + (1 − ˇ)
c∑

i=1

�i

n∑
k=1

(1 − tik)p, (2)

where �ik = [ˇ˛um
ik

+ (1 − ˇ)tp
ik

+ ˇ(1 − ˛)hik] is the mixed partition
matrix element describing the degree to which the input item
xk is assigned to cluster index i; hik, uik, and tik represent the
degrees of membership of input datum xk with respect to cluster Ci,
assigned by the hard, fuzzy, and possibilistic criteria, respectively,
constrained by hik ∈{0, 1},

∑c
i=1hik = 1 ∀ k = 1 . . . n; uik ∈ [0, 1],∑c

i=1uik = 1 ∀ k = 1 . . . n; tik ∈ [0, 1], 0 <
∑c

i=1tik < c ∀ k = 1 . . . n,
and 0 <

∑n
k=1tik < n ∀ i = 1 . . . c; m and p are the exponents of

the fuzzy and possibilistic terms, restricted by m > 1 and p > 1, as
defined in [27] and [28], respectively; �i, i = 1 . . . c, are the variance
parameters of the possibilistic term defined as

�i = � ·
∑n

k=1um
ik

||xk − vi||2∑n
k=1um

ik

(3)

[28]; ˛ and ˇ are tradeoff parameters, constrained by 0 ≤ ˛ ≤ 1 and
0 ≤ ˇ ≤ 1, which control the relative strength of the three terms
within the hybrid cost function. In this order, ˇ controls the strength
of possibilistic clustering, while ˛ is responsible of the FCM-HCM
ratio in the mixture, similarly to the case of suppressed FCM. Fig. 1
shows some special cases of the tradeoff parameters: these only
cover the most part of the boundary and the three corners of the
domain of definition.

The AO iterative solution scheme is obtained using zero gradient
conditions and Lagrange multipliers. Not at all surprisingly, the par-
tition update formulas are obtained exactly as in the conventional
HCM, FCM, and PCM algorithms. For any i = 1 . . . c and k = 1 . . . n, we
get:

hik =
{

1 if i = argmin
j

{||xk − vj||, j = 1 . . . c}
0 otherwise

, (4)

uik =
m−1
√

||xk − vi||−2∑c
j=1

m−1
√

||xk − vj||−2
, (5)

tik =
(

1 + p−1

√
||xk − vi||2

�i

)−1

. (6)

The cluster prototype update formula, which also comes from
the zero gradient conditions, will have the following form:

vi =
∑n

k=1[ˇ˛um
ik

+ (1 − ˇ)tp
ik

+ ˇ(1 − ˛)hik]xk∑n
k=1[ˇ˛um

ik
+ (1 − ˇ)tp

ik
+ ˇ(1 − ˛)hik]

. (7)

Fig. 1. Parametrization of the proposed hybrid clustering model, its domain of def-
inition with special cases at the boundary and corners: ˇ = 0 corresponds to PCM,
ˇ = 1 and ˛ = 0 is HCM, ˇ = 1 and ˛ = 1 reduces to FCM, ˛ = 1 and ˇ ∈ (0, 1) is the PFCM
model of Pal et al. [30], and finally ˇ = 1 and ˛ ∈ (0, 1) is the optimally suppressed
FCM (Os-FCM) introduced in [32].

Similarly to the AO scheme of the FCM algorithm, the parti-
tion update formulas (4)–(6), and the prototype update rule (7)
are repeatedly applied until cluster prototypes stabilize.

3.2. The proposed INU compensation schemes

In the following, we will combine the hybrid c-means clus-
tering algorithm with the INU modeling schemes, in order to
segment heavily INU-contaminated MR brain images. Pixels of such
images are characterized by a single feature value representing the
observed intensity of the pixel. Under such circumstances, using
bias field for INU compensation, the modified objective function
becomes:

Jhyb−b =
n∑

k=1

c∑
i=1

�ik(yk − bk − vi)
2 + (1 − ˇ)

c∑
i=1

�i

n∑
k=1

(1 − tik)p. (8)

On the other hand, if we approximate the INU artefact as a gain
field, the objective function is:

Jhyb−g =
n∑

k=1

c∑
i=1

�ik(yk − gkvi)
2 + (1 − ˇ)

c∑
i=1

�i

n∑
k=1

(1 − tik)p. (9)

Both approaches use the same hybrid partition �ik, which on
its turn depends on the tradeoff parameters ˛ and ˇ, as shown in
Fig. 1. Both modified objective functions are optimized using the
zero gradient conditions. The computation of the fuzzy partitions
also requires the use of Lagrange multipliers. The optimization for-
mulas are presented in Table 1, while details showing the way they
were obtained are revealed in Appendix A.

The estimation process of the bias or gain field does not assure a
smooth variation of the INU. In fact, the fuzzy and hard component
of the cost function are strongly pushed towards 0 with specially
chosen bk or gk values, in the following way:

1. For any observed intensity value yk, we can choose a winner
cluster prototype vwk

(e.g. wk = argmin
i

(|yk − bk − vi|), and solv-
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Table 1
Optimization formulas of the modified cost function of the hybrid c-means clustering model, aiming at INU correction via bias and gain field estimation.

Formula Bias field approach Gain field approach

(A) Fuzzy partition uik =
m−1
√

(yk−bk−vi )
−2∑c

j=1

m−1
√

(yk−bk−vj )
−2

uik =
m−1
√

(yk−gkvi )
−2∑c

j=1

m−1
√

(yk−gkvj )
−2

(B) Possibilistic partition tik =
[

1 + p−1

√
(yk−bk−vi )

2

�i

]−1

tik =
[

1 + p−1

√
(yk−gkvi )

2

�i

]−1

(C) Hard partition hik =
{

1 if i = argmin
j

{|yk − bk − vj |}
0 otherwise

hik =
{

1 if i = argmin
j

{|yk − gkvj |}
0 otherwise

(D) Hybrid partition �ik = ˇ˛um
ik

+ (1 − ˇ)tp
ik

+ ˇ(1 − ˛)hik �ik = ˇ˛um
ik

+ (1 − ˇ)tp
ik

+ ˇ(1 − ˛)hik

(E) Cluster prototypes vi =
∑n

k=1
�ik (yk−bk )∑n

k=1
�ik

vi =
∑n

k=1
�ikgkyk∑n

k=1
�ikg2

k

(F) INU field estimation bk = yk −
∑c

i=1
�ikvi∑c

i=1
�ik

gk = yk ·
∑c

i=1
�ikvi∑c

i=1
�ikv2

i

ing ties arbitrarily), and set bk = yk − vwk
. With this bias value we

get uwkk = hwkk = 1, and uik = hik = 0 for any i /= wk. If we repeat
this procedure for all pixels, two of the three components of the
cost function will reduce to zero.

2. Similarly at gain field estimation, we can choose gk = yk/vwk
,

which yields uwkk = hwkk = 1, and uik = hik = 0 for any i /= wk, obvi-
ously zeroing the above mentioned two components.

However, none of these trivial minima serve the smoothness of
the estimated INU field. In order to avoid this shortcoming, besides
using a strong possibilistic component in the hybrid partition, a
smoothing filter is employed at the end of each iteration, which
determine the bk or gk values to follow the slow variation of the
inhomogeneity.

3.3. Image filtering

In order to assure the robustness of the proposed segmentation
algorithm, two context dependent filters are employed. The first
one, applied as a prefiltering before segmentation, serves the elim-
ination of high-frequency noises from the input image. The second
filtering technique is involved in the INU compensation and assures
the smooth variation of the estimated bias or gain field.

Impulse and Gaussian noises are removed from the original MR
image using a context dependent local filtering, which combines
averaging and median filtering effects based on physical distances
and gray level differences between neighbor pixels. The filter was
presented in details in our previous work [38].

The intensity inhomogeneity artefact varies slowly along the
image. This property is ignored by both compensation approaches
presented above: the estimated bias or gain field does contain tis-
sue details. To avoid this problem, a filtering step is necessary in
each computation cycle, after having computed the bias or gain
field, to smoothen the estimated field and thus eliminate the high-
frequency components that mainly correspond to tissue details.

The smoothing filter has to be designed in a way that it con-
forms to the following warnings. If the size of the filter mask is too
large, the filter will be too strong: it will not only eliminate tis-
sue patterns from the bias or gain value, but also will suppress the
estimated inhomogeneity, leading to failed segmentation. On the
other hand, if the size of the filter mask is too small, the filter will be
too weak to eliminate all tissue patterns. In this case, the edges in
the compensated image will lose their sharpness, leading to several
misclassifications along the tissue boundaries.

Most INU compensation approaches, not only those using c-
means clustering, apply large sized averaging filters, with window

sizes varying from 11 × 11 to 31 × 31 pixels. These filters are per-
formed once or more times in each cycle [4]. In order to deal
with the above mentioned warnings, in a previous work [37] we
proposed a context sensitive smoothing filter that performs a
repeated averaging in every iteration, where the number of rep-
etitions are locally decided using a morphological criterion. The
main parameters of this smoothing filter is the shape and size of
the morphological structuring element, and the mask size of the
averaging filter.

A further enhancement of this smoothing process is achieved
by allowing the averaging mask of the smoothing filter to change
its size and shape, according to local conditions. The main local
properties of the smoothed bias or gain field, which affect the mask
parameters, are the gradient strength and direction. In the first iter-
ation of the hybrid c-means algorithm, smoothing uses a predefined
square shaped mask called basic mask. In any further iteration, the
gradient strength and direction of the smoothed bias or gain field
computed in the previous iteration, determine the deformation of
the locally applied averaging mask. Higher gradient components
require stronger averaging, so they imply a deformed, rectangular
shaped mask, longer in the direction of the gradient vector.

Another important step of the smoothing is to shift the bias
(gain) values in order to assure the zero-mean (1-mean) value.
Neglecting this effect may distort the cluster prototype intensities.

3.4. Multiple stage bias and gain field estimation

Bias or gain field estimation using the previous FCM-based
approaches [1,25] can only handle the INU artefact to a limited
amplitude. For any pixel, the c-means clustering algorithm assigns
the highest degree of membership to the closest cluster. Conse-
quently, when the INU amplitude is comparable with the distance
between clusters, these pixels will be attracted by the wrong clus-
ter, and the bias or gain field will be estimated accordingly. The
smoothing of the bias and gain field may repair this kind of mis-
classifications, but the larger these wrongly labeled spots are, the
harder it will be to eliminate them via smoothing.

In order to deal with high-amplitude INU artefacts, we propose
performing the bias or gain field estimation in multiple stages.
When the modified hybrid c-means algorithm using the optimiza-
tion formulas from either column of Table 1 has converged, we
modify the input (observed) image according to the estimated bias
or gain field:

yk = y(old)
k

− bk or yk = y(old)
k

gk
, (10)
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and then restart the algorithm from the beginning, using the mod-
ified input image.

3.5. The proposed segmentation algorithm

The presented algorithm can be summarized as follows:

1. Remove the Gaussian and impulse noises from the MR image
using the context dependent prefiltering technique proposed
in [38].

2. Set initial parameters of the hybrid clustering model, including
tradeoff parameters ˛ and ˇ, fuzzy and possibilistic exponents
m and p, and the possibilistic penalty terms �i.

3. Initialize cluster prototypes vi, i = 1 . . . c, with random values
differing from each other.

4. Initialize the bias (gain) field values with 0-mean (1-mean)
random numbers having reduced variance, or simply set bk = 0
(gk = 1) for all pixels.

5. Compute the new fuzzy partition values uik, i = 1 . . . c, k = 1 . . . n,
using the corresponding formula indicated in Table 1, row (A).

6. Compute the new possibilistic partition values tik, i = 1. . .c,
k = 1. . .n, using the corresponding formula indicated in Table 1,
row(B).

7. Compute the new hard partition values hik, i = 1 . . . c, k = 1 . . . n,
using the corresponding formula indicated in Table 1, row (C).

8. Build up the new hybrid partition, based on the tradeoff param-
eter values ˛ and ˇ, as indicated in Table 1, row (D).

9. Compute new cluster prototype values vi, i = 1 . . . c, using the
corresponding formula indicated in Table 1, row (E).

10. Perform new bias or gain field estimation for each pixel k using
the corresponding formula indicated in Table 1, row (F).

11. Smoothen the bias or gain field using the proposed smoothing
filter, using the context dependent filtering technique proposed
in Section 3.3.

12. Repeat steps 5–11 until there is no relevant change in the clus-
ter prototypes. This is tested by comparing any norm of the
difference between the new and the old vector v with a preset
small constant ε.

13. Modify the input image according to the estimated bias or gain
field using (10), and repeat steps 3–12 until the INU artefact is
compensated. The algorithm usually requires a single repeti-
tion.

We can observe that steps 5–7 do not depend on each other, so
they can be computed in any order, or even they can be performed
by parallel tasks. The order shown here was chosen arbitrarily.

4. Results and discussion

4.1. Validation of the clustering model

The proposed hybrid c-means clustering model has undergone
thorough validation process, using several standard test data sets
including the Iris data [39] and the Wine data [40]. The main prop-
erties of these two data sets are summarized in Table 2. Iris data

Table 2
Properties of the most popular test data sets.

Property Iris data Wine data

Feature vectors 150 178
Dimensions 4 13
Classes 3 3
Cardinality of classes 50, 50, 50 59, 71, 48
Normalization Optional Mandatory
Correct decisions with FCM Approx. 134 Approx. 169
Acceptable MCR 11% 5%

Table 3
The best accuracy achieved using the hybrid c-means clustering model.

Accuracy criterion Iris data Wine data

Minimum correct decisions 139 171
Maximum correct decisions 140 172
Average correct decisions 139.72 171.65
Average MCR 6.85% 3.57%

represents a collection of 150 feature vectors containing 4 different
measures of individual iris flowers. Wine data comprises 13 well
defined chemical parameters of 178 different wines. The vectors in
both data sets belong to three different classes, as indicated by the
labels assigned to each vector. Classes in Iris data have 50 items
each, while Wine classes have unequal cardinalities. The parame-
ters in the Wine data set have wide and various ranges; that is why
these vectors have to be normalized before clustering. Iris sizes do
not vary to much, so their normalization is not necessary.

In the Iris data set, one class is well separated from the other
two, but these latter ones seriously overlap each other. That is why,
a misclassification rate (MCR) of 10–11% in case of the Iris data is
acceptable. On the other hand, conventional clustering algorithms
provide 4–5% of misclassifications on the normalized Wine data set.

As a first part of the evaluation of the proposed hybrid c-means
algorithm, we have analyzed the influence of the system param-
eters (˛, ˇ, �, m, p) upon the MCR value. The whole domain of
definition of tradeoff parameters ˛ and ˇ was tested at resolu-
tions of 0.001–0.025. For each setting, the hybrid clustering was
performed 200 times using predefined sets of randomly chosen
initialization of the cluster prototypes. The main criterion of accu-
racy was the MCR averaged over the 200 runs. Details on the best
achieved accuracy are shown in Table 3. These numeric values show
the superiority of the well tuned hybrid approach over FCM.

Fig. 2 exhibits the classification accuracy plotted against ˛ and ˇ,
using variance penalty terms �i conditioned by � = 1. The left part
of the figure shows the whole domain of definition of the trade-
off parameters, while the right part magnifies those areas where
higher accuracy was obtained. Using higher values of � has two
visible consequences:

1. the areas of highest accuracy drift outwards within the sector of
the circle;

2. the best achieved MCR slightly rises.

This latter effect and the recommendations given in [28] deter-
mined us to use � = 1 in all further tests.

The convergence speed of the algorithm, characterized by the
average number of iterations that are necessary to obtain a certain
stability of cluster prototypes, has also been tested in the whole
domain of tradeoff parameters. Tests have revealed the determinis-
tic presence of a critical point along the axis ˛ = 1, generally situated
in the interval ˇ ∈ [0.1, 0.15], indicating that a dominantly possi-
bilistic mixture, which is free from HCM component, is likely to
need significantly more iterations than any other hybrid mixture.
In the proximity of this point, hybrid clustering may require hun-
dreds of iterations to reach convergence, which is an undesired
phenomenon. Consequently, tradeoff parameters have to be chosen
such a way to avoid this critical point.

Cluster validity has been tested using an easily imple-
mentable and comprehensible cluster validity index (CVI): CVI =
min{||vi − vj|| : 1 ≤ i < j ≤ c}, which represents the minimum dis-
tance between any pair of cluster prototypes. We call a solution
stable or valid if its CVI is high, and unstable or invalid if its CVI is
low. Thorough test have revealed that pure PCM and mixtures situ-
ated close to PCM (conditioned by ˇ < 0.1) have significantly lower
stability than any other mixture.
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Fig. 2. The average accuracy of the Iris data partitions, plotted against tradeoff parameters ˛ and ˇ, using possibilistic penalty terms �i conditioned by � = 1. The right graph
shows a magnified view of the region bounded by ˇ < 0.25.

Finally, let us summarize the recommendation regarding trade-
off parameters:

1. The possibilistic penalty terms should be computed using � = 1,
to ensure our chances to achieve the best possible accuracy;

2. Setting ˇ ∈ [0.1, 0.15] keeps us far enough from pure PCM and
ensures low sensibility to outlier data;

3. Setting ˛ ∈ [0.25, 0.75] avoids the critical point of convergence
speed. Lower ˛ values make the convergence quicker, but may
also have bad influence upon accuracy.

These parameter settings ensure the robustness of the clas-
sification process and provide fine partitions regardless on
the initial cluster prototypes. For further details regarding the

Fig. 3. Inhomogeneity correction using three different phantoms: the first column in each row shows the original image, the second presents the failed FCM-based segmen-
tation without INU compensation, the third column exhibits the estimated bias field, while the last column shows the final segmentation result. Row (c) treats the case when
an amount of high-frequency noise is also present.
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validation of the clustering model, the reader is referred to
[41].

4.2. Image segmentation experiments

We applied the presented filtering, INU compensation and
image segmentation techniques to several phantoms and T1-
weighted real MR images taken from the Internet Brain
Segmentation Repository [42], artificially contaminated with dif-
ferent kinds of noises. The distance between neighbor pixels in all
real images involved in this test were between 0.8 and 1.0 mm.
According to the recommendations formulated in the previous sec-
tion, the tradeoff parameters of the hybrid clustering model were
set to ˛ = 0.5, ˇ = 0.1, and � = 1.

The proposed inhomogeneity compensation method was tested
on both artificial phantoms and real MR images. Brain MR images
are segmented to three classes: white matter, gray matter, and cere-
brospinal fluid. Most phantoms used for testing had two or three
relevant intensity classes. The results of bias and gain field esti-
mation performed on phantom images are shown in Fig. 3. The
conventional FCM or the hybrid clustering model without com-
pensation cannot handle the INU artefact correctly, but with the
use of smoothed bias or gain field estimation, this phenomenon
is efficiently overcome. The compensation succeeded in one stage,
and provided the same accuracy for both the bias and the gain field
approach.

In case of low-amplitude inhomogeneity, a single stage of bias
or gain field estimation is sufficient for real MR images as well.
However, as the magnitude of the INU rises, more stages will be
necessary to produce an acceptable segmentation. Fig. 4 shows
the intermediary and final results of a segmentation process,
performed on a heavily INU-contaminated MR image. The inho-
mogeneity correction succeeds after two stages. Although most of
the non-uniformity present in the input image is compensated in

the first stage, the remaining part still makes the FCM or hybrid
clustering based segmentation fail, so a second stage is necessary.
After the second stage, the compensated image seems to have pre-
served the sharpness of its edges, which is necessary for an accurate
segmentation.

Several tests on T1-weighted real images contaminated with
high-magnitude INU were performed, using:

1. different fixed sizes and shapes of the structuring element of the
proposed morphological smoothing filter, and

2. a set of smoothing windows, with sizes ranging from 9 × 9 to
31 × 31.

The evaluation using real MR images was performed using
45 different, T1 weighted MR brain images from various healthy
patients. The proposed algorithm with various settings was tested
to segmentation all images, and the MCR was averaged for each set-
ting. Table 4 gives an insight into the best averaged misclassification
percentages obtained in various circumstances. For each given set-
ting of the morphological filter, the best obtained average MCR is
given, together with the averaging window size, for both the FCM-
based, and the hybrid clustering based segmentation methods. The
last column reports the MCR obtained using the hybrid approach
and the adaptive averaging window size. The most relevant facts
reflected by this table are:

1. If the averaging window size is fixed, the most accurate seg-
mentation is obtained at a window size of 17 × 17 or 19 × 19
pixels. This is why, for the adaptive windowed averaging, we
recommend using one of these as initial setting.

2. The hybrid clustering model always produces better accuracy
with respect to the FCM-based approach. Using the hybrid
approach instead of the fuzzy partitioning reduces the MCR by
17.07% in average.

Fig. 4. Segmentation of a heavily inhomogeneous real MR image: (a) original, (b) segmentation without compensation, (c) bias field estimated in the first stage, (d) com-
pensated MR image after first stage, (e) FCM-based segmentation after first stage, still unusable, (f) bias field estimated in the second stage, (g) final compensated image, (h)
segmented image.
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Table 4
Misclassification percentages with various smoothing filters, in case of heavily INU-contaminated MR images. The first filter is simple averaging, while all others contain the
proposed morphological criterion. The adaptive mask had an initial size of 17 × 17 pixels.

Structuring element Fuzzy c-means model Hybrid c-means model

Size Shape MCR Mask size MCR Mask MCR with adaptive mask

Averaging None 4.368% 17 × 17 3.795% 19 × 19 3.381%
3 × 3 Square 2.852% 17 × 17 2.428% 17 × 17 2.297%
5 × 5 Cross 3.561% 19 × 19 2.856% 19 × 19 2.389%
7 × 7 Cross 3.309% 19 × 19 2.962% 19 × 19 2.523%
11 × 11 Cross 3.268% 19 × 19 2.807% 17 × 17 2.422%

3. The adaptive sized smoothing window can bring another 14.15%
improvement of the misclassification rate.

4. The most accurate partitions were obtained using 3 × 3 square
or 5 × 5 pixel cross shaped structuring element and adaptive
smoothing window.

5. The obtained MCR values are at the same level as the best
reported ones in the literature of INU compensation [4].

The color of tumors in MR images usually differs from WM, GM,
and CSF. That is why, when one wants to segment an image with
tumor, the number of classes should be set to c = 4.

Using several repetitive stages during INU compensation may
reduce the intensity difference between tissue classes, leading to
misclassifications. That is why the estimation is limited to two
steps, performing several stages is not recommendable. However,
in case of T1-weighted brain MR images and segmentation into
three clusters, no more than two stages are necessary.

Although the bias- and gain field compensation approaches dif-
fer in their formulation, there is no significant difference between
their efficiency and accuracy, that is, there is no evidence for any of
them to be superior.

The classification accuracy of the proposed algorithm is slightly
better than those of reported FCM-based INU compensation meth-
ods [1,25]. The major superiority of the proposed method consists
in the fact, that in case of high-amplitude INU artefact, most of the
reported methods fail at the point indicated in Fig. 4(d) and (e).

The usage of the hybrid clustering model instead of the FCM
algorithm does not mean a relevant extra computational load.
Although the duration of an iteration in the internal loop (steps
5–11 of the algorithm given in Section 3.5) rises by 18–20%, the
number of necessary iterations to reach convergence falls about
the same amount, making the total duration of the segmentation
approximately equal to that of the FCM algorithm. This is why the
proposed method performs about in the same time as the intel-
ligent modified FCM based algorithm of Siyal and Yu [1], and is
quicker than the BCFCM [25] by an order of magnitude, as this latter
uses a computationally costly in-loop regularizer operation.

The computations performed by the proposed algorithm can
be easily scheduled to parallel execution, significantly reducing
the execution time. Parallelized execution may be implemented
on either multi-processor systems or modern graphical processing
units.

5. Conclusion

A novel method has been proposed for the segmentation of MR
images in the presence of intensity non-uniformity. The proposed
approach replaces the key element of the conventional FCM-based
INU compensation, involving a hybrid c-means algorithm into the
partitioning process. Further on, a new adaptive smoothing fil-
ter has been proposed to assist the bias or gain field estimation
embedded into the hybrid c-means based algorithmic scheme.

The hybrid c-means clustering algorithm was validated using
widely used test data sets. The optimal tradeoff parameters were
extracted in order to support fine partitioning.

The proposed image segmentation method proved to produce
accurate partitions in the presence of severe intensity non-
uniformity. The quantitative evaluation of the segmentation quality
revealed the superiority of the well-tuned hybrid c-means algo-
rithm over FCM, and placed the proposed method among the
most accurate segmentation techniques in the presence of high-
magnitude INU artifacts.
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Appendix A. Details on the optimization of the modified
hybrid objective functions

A.1. Bias field estimation formulas

In the bias field based INU estimation approach, the modified
cost function is given as:

Lbias = Jhyb−b +
n∑

k=1

�k

c∑
i=1

(
1 −

c∑
i=1

uik

)
=

c∑
i=1

n∑
k=1

[ˇ˛um
ik + (1 − ˇ)tp

ik
+ ˇ(1 − ˛)hik](yk − bk − vi)

2

+ (1 − ˇ)
c∑

i=1

�i

n∑
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(1 − tik)p +
n∑
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�k
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(
1 −

c∑
i=1

uik

) ,

where �k, k = 1 . . . n are the Lagrange multipliers. Let us start the
investigation of the zero gradient conditions we can get from the
partial derivatives with respect to fuzzy memberships uik.

∂Lbias

∂uik
= 0 ⇒ m˛ˇum−1

ik
(yk − bk − vi)

2 = �k,

which in case of ˛ˇ /= 0 becomes

uik = m−1

√
�k

m˛ˇ
· m−1
√

(yk − bk − vi)
−2

The probabilistic constraint of fuzzy memberships implies:

c∑
j=1

ujk = 1 ⇒ m−1

√
�k

m˛ˇ
=

⎛⎝ c∑
j=1

m−1
√

(yk − bk − vj)
−2

⎞⎠−1

,

and consequently we get

uik =
m−1
√

(yk − bk − vi)
−2∑c

j=1
m−1
√

(yk − bk − vj)
−2

.

With respect to hik, the cost function cannot be differentiated.
Hard partition is established using the winner-takes-all rule.
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The update formula of the possibilistic partition is obtained as
follows:

∂Jhyb−b

∂tik
=0 ⇒ p(1−ˇ)tp−1

ik
(yk − bk − vi)

2 = p(1 − ˇ)�i(1 − tp−1
ik

),

which in case of ˇ /= 1 implies

(yk−bk−vi)
2

�i
=
(

1
tik

− 1
)p−1

⇒ tik =
[

1 + p−1

√
(yk − bk − vi)

2

�i

]−1

.

Let us remark here that in case of ˛ˇ = 0 the fuzzy term is not
present in the hybrid, while in case of ˇ = 1 the possibilistic term
is absent, so their optimization can be neglected. This property is
also valid in case of the gain field approach, presented in the next
section.

The update formula of cluster prototypes comes from the zero
gradient condition

Jhyb−b

∂vi
= 0 ⇒ − 2

n∑
k=1

�ik(yk − bk − vi) = 0,

which implies

n∑
k=1

�ik(yk − bk) = vi

n∑
k=1

�ik ⇒ vi =
∑n

k=1�ik(yk − bk)∑n
k=1�ik

.

Finally, we need to partially differentiate the cost function with
respect to bk:

∂Jhyb−b

∂bk
= 0 ⇒ − 2

c∑
i=1

�ik(yk − bk − vi) = 0,

which leads to

(yk − bk)
c∑

i=1

�ik =
c∑

i=1

�ikvi ⇒ bk = yk −
∑c

i=1�ikvi∑c
i=1�ik

.

A.2. Gain field estimation formulas

Lagrange multipliers make the cost function of the gain field
approach look like:

Lgain = Jhyb−g +
n∑

k=1

�k

c∑
i=1

(
1 −

c∑
i=1

uik

)
=

c∑
i=1
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ik
+ ˇ(1 − ˛)hik](yk − gkvi)

2

+ (1 − ˇ)
c∑

i=1

�i

n∑
k=1

(1 − tik)p +
n∑

k=1

�k

c∑
i=1

(
1 −

c∑
i=1

uik
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where �k, k = 1 . . . n are the Lagrange multipliers. The partial deriva-
tives with respect to fuzzy memberships uik will be

∂Lgain

∂uik
= 0 ⇒ m˛ˇum−1

ik
(yk − gkvi)

2 = �k,

which in case of ˛ˇ /= 0 becomes

uik = m−1

√
�k
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· m−1
√
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−2.

The probabilistic constraint of fuzzy membership implies:

c∑
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so consequently we get
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√
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.

The update formula of the possibilistic partition is obtained as
follows:

∂Jhyb−g
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ik
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.

Similarly to the bias estimation case, hard partition is estab-
lished using the winner-takes-all rule.

The update formula of cluster prototypes comes from the zero
gradient condition

∂Jhyb−g

∂vi
= 0 ⇒ − 2

n∑
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n∑
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.

Finally, we need to partially differentiate the cost function with
respect to gk:
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