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a b s t r a c t

Intending to achieve an algorithm characterized by the quick convergence of hard c-means (HCM) and
finer partitions of fuzzy c-means (FCM), suppressed fuzzy c-means (s-FCM) clustering was designed to
augment the gap between high and low values of the fuzzy membership functions. Suppression is
produced via modifying the FCM iteration by creating a competition among clusters: for each input
vector, lower degrees of membership are proportionally reduced, being multiplied by a previously set
constant suppression rate, while the largest fuzzy membership grows to maintain the probabilistic
constraint. Even though so far it was not treated as an optimal algorithm, it was employed in a series of
applications, and reported to be accurate and efficient in various clustering problems. In this paper we
introduce some generalized formulations of the suppression rule, leading to an infinite number of new
clustering algorithms. Further on, we identify the close relation between s-FCM clustering models
and the so-called FCM algorithm with generalized improved partition (GIFP-FCM). Finally we reveal
the constraints under which the generalized s-FCM clustering models minimize the objective function of
GIFP-FCM, allowing us to call our suppressed clustering models optimal. Based on a large amount of
numerical tests performed in multidimensional environment, several generalized forms of suppression
proved to give more accurate partitions than earlier solutions, needing significantly less iterations than
the conventional FCM.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

C-means clustering algorithms belong to unsupervised classifi-
cation methods which group a set of input vectors into a
previously defined number (c) of classes. Initially there was the
hard c-means (HCM) algorithm [31], which employed the bivalent
(crisp) logic to describe partitions. HCM usually converges quickly,
but is considerably sensitive to initialization [1], and frequently
gets stuck in local minima leading to mediocre partitions.

The introduction of fuzzy logic [41] into classification theory led
to the definition of the fuzzy partition [34], in which every input
vector can belong to several classes with various degrees of member-
ship, and the formulation of fuzzy clustering problems [10]. The first
c-means clustering algorithm that employs fuzzy partitions is the so-
called fuzzy c-means (FCM) proposed by Bezdek [3], which uses a
probabilistic constraint to define the fuzzy membership functions.

FCM reportedly creates finer partitions than HCM, it has a reduced
but still observable sensitivity to initial cluster prototypes, but it
converges much slower. In spite of this drawback, FCM is one of the
most popular clustering algorithms [23] not only in engineering
studies, but also in awide variety of sciences from climatology [22] to
economical forecasting [24].

There exist several reported attempts to reduce the execution time
of FCM, without causing serious damage to the partition quality. Early
solutions—developed for computers with reduced computing power—
turned to data approximation. The first accelerated FCM algorithms
[5,25] used integer computation only. Cheng et al. [8] proposed data
reduction based on random sampling, leading to a fast approximative
FCM clustering. Higher speed has been also reached via data reduc-
tion. Eschrich et al. [11] aggregated similar input vectors into a
weighted example. Their solution was able to speed up FCM by an
order of magnitude. Data aggregation was employed in image seg-
mentation, to cluster gray intensity levels instead of individual pixels,
speeding up the execution by two orders of magnitude [36].

Alternately, Lázaro et al. [30] proposed a parallel hardware
implementation to the FCM algorithm and successfully applied it
in signal processing. Kolen and Hutcheson [27] reorganized FCM to

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.02.027
0925-2312/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author. Tel./fax: þ40 265 262275.
E-mail addresses: lalo@ms.sapientia.ro (L. Szilágyi),

szsandor72@yahoo.com (S.M. Szilágyi).
1 Tel.: þ40 265 208170; fax: þ40 265 206211.

Neurocomputing 139 (2014) 298–309

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.02.027
http://dx.doi.org/10.1016/j.neucom.2014.02.027
http://dx.doi.org/10.1016/j.neucom.2014.02.027
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.02.027&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.02.027&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.02.027&domain=pdf
mailto:lalo@ms.sapientia.ro
mailto:szsandor72@yahoo.com
http://dx.doi.org/10.1016/j.neucom.2014.02.027


reduce the necessary memory storage by eliminating the partition
matrix. Their solution was found significantly quicker than the
classical formulation of FCM, especially in case of a large amount
of input data. Further remarkable solutions for clustering unload-
able amount of input data were given by Hathaway and Bezdek
[14], and Havens et al. [15].

The suppressed fuzzy c-means (s-FCM) algorithm, introduced by
Fan et al. [12], proposed to make a step from FCM towards HCM, by
manipulating with the fuzzy membership functions computed in each
iteration of the FCM's alternating optimization (AO) scheme. The
authors defined a previously set constant suppression rate αA ½0;1�,
which determined the behavior of the algorithm. In each iteration,
after having determined the new fuzzy membership functions for
input vector with index k, denoted by u1k;u2k;…;uck, the algorithm
looks for the largest (winner) membership value uwk, with w¼
arg maxifuik; i¼ 1;2;…; cg, suppresses all non-winner memberships
by multiplication with α and raises the winner membership value uwk

in such a way that the probabilistic constraint is not harmed. The
authors remarked that setting the suppression rate α¼ 0 makes
s-FCM behave like HCM, while α¼ 1 reduces the algorithm to the
conventional FCM. The authors failed to explain in detail what is
happening in case of other values of α, they only said that the
competition created among classes leads to beneficial effects in
both execution time and partition quality. Later, Hung et al. [19,20]
proposed some suppression rate selection schemes, and employed
s-FCM to segment magnetic resonance images. Hung et al. [19]
reported improved segmentation results for the suppressed FCM
compared to the conventional one. Further modifications and applica-
tions of s-FCM were proposed recently in [35,21,32,39].

In a previous paper [37], we have studied in detail the competition
of clusters caused by suppression. We have introduced a quasi-
learning rate (QLR), similar to the learning rate known from conven-
tional competitive clustering algorithms [26]. This QLR gives a
mathematically precise characterization of the competition. In this
paper we will show that the QLR established in [37] allows us to
define a series of generalization rules for the suppression, opening the
gate towards novel efficient and accurate clustering algorithms. We
will further show that all sorts of suppressed FCM algorithms are
optimal, as they minimize a special version of the objective function
introduced by Zhu et al. in their generalized theory of FCM algorithms
with improved partition [42].

The rest of this paper is structured as follows. Section 2 presents
the necessary details of s-FCM and the competition it creates, which
stand at the basis of our investigations. Section 3 introduces several
types of generalized suppression rules for s-FCM, giving an analy-
tical and graphical description of the proposed methods. Section 4
discusses the question of optimality of all suppressed FCM cluster-
ing models. Section 5 reports and discusses the benchmark tests
performed with the generalized s-FCM algorithm variants. Conclu-
sions are given in the last section.

2. Related works

2.1. The fuzzy and hard c-means algorithms

The conventional FCM algorithm partitions a set of object data
into a number of c clusters based on the minimization of a
quadratic objective function. The objective function to be mini-
mized is defined as

JFCM ¼ ∑
c

i ¼ 1
∑
n

k ¼ 1
um
ik Jxk�vijj2A ¼ ∑

c

i ¼ 1
∑
n

k ¼ 1
um
ikd

2
ik; ð1Þ

where xk represents the input data (k¼ 1…n), vi represents the
prototype or centroid value or representative element of cluster
i (i¼ 1…c), uikA ½0;1� is the fuzzy membership function showing

the degree to which vector xk belongs to cluster i, m41 is the
fuzzyfication parameter, and dik represents the distance (any inner
product norm defined by a symmetrical positive definite matrix A)
between vector xk and cluster prototype vi. FCM uses a probabil-
istic partition, meaning that the fuzzy memberships of any input
vector xk with respect to classes satisfy the probability constraint

∑
c

i ¼ 1
uik ¼ 1: ð2Þ

The minimization of the objective function JFCM is achieved by
alternately applying the optimization of JFCM over fuikg with vi

fixed, i¼ 1…c, and the optimization of JFCM over fvig with uik fixed,
i¼ 1…c, k¼ 1…n [3]. During each iteration, the optimal values are
deduced from the zero gradient conditions and Lagrange multi-
pliers, and obtained as follows:

u⋆
ik ¼

d�2=ðm�1Þ
ik

∑c
j ¼ 1d

�2=ðm�1Þ
jk

8 i¼ 1…c; 8 k¼ 1…n; ð3Þ

v⋆i ¼∑n
k ¼ 1u

m
ikxk

∑n
k ¼ 1u

m
ik

8 i¼ 1…c: ð4Þ

According to the AO scheme of the FCM algorithm, Eqs. (3) and
(4) are alternately applied, until cluster prototypes stabilize. This
stopping criterion compares the sum of norms of the variations of
the prototype vectors vi within the latest iteration with a pre-
defined small threshold value ε.

Hard c-means is a special case of FCM, which uses m¼1, and
thus the memberships are obtained by the winner-takes-all rule.
Each cluster prototype will be the average of the input vectors
assigned to the given cluster.

2.2. FCM with improved partition

Partitions provided by FCM have an undesired property, which is
visualized in Fig. 1 for the case of a one-dimensional problem and c¼3
clusters. In the proximity of the boundary between two neighbor
clusters, a zero fuzzy membership value for the third cluster would be
appreciated. Instead of that, these fuzzy membership functions with
respect to any third cluster have elevated values at the boundary of
the other two clusters. Due to this behavior, Hop̈pner and Klawonn
[17] called the FCM partition multimodal. They also pointed out the
fact that the multimodality could be suppressed by reducing the fuzzy
exponent m, but in most cases that is not desired because it also
influences the fuzzyness of the algorithm. To avoid or at least suppress
this multimodality, they introduced the so-called FCM with improved
partition (IFP-FCM), which is derived from an objective function that
additionally contains a rewarding term:

JIFP�FCM ¼ ∑
c

i ¼ 1
∑
n

k ¼ 1
um
ikd

2
ik� ∑

n

k ¼ 1
ak ∑

c

i ¼ 1
ðuik�1=2Þ2; ð5Þ

where parameters ak are positive numbers. The second term has the
effect of pushing the fuzzy membership values uik, i¼ 1…c, k¼ 1…n
towards 0 or 1, while maintaining the probabilistic constraint.

Later, Zhu et al. [42] introduced a generalized version of this
algorithm, derived from the objective function:

JGIFP�FCM ¼ ∑
c

i ¼ 1
∑
n

k ¼ 1
um
ikd

2
ikþ ∑

n

k ¼ 1
ak ∑

c

i ¼ 1
uikð1�um�1

ik Þ; ð6Þ

whose optimization leads to the partition update formula

u⋆
ik ¼

ðd2ik�akÞ�1=ðm�1Þ

∑c
j ¼ 1ðd

2
jk�akÞ�1=ðm�1Þ 8 i¼ 1…c; 8 k¼ 1…n: ð7Þ

Eq. (7) explains to us the behavior of GIFP-FCM: for any input
vector xk, the square of its distances measured from all cluster
prototypes is virtually reduced by a constant positive value ak, and
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then the partition is updated with the formula of the standard
FCM. Zhu et al. [42] also proposed a formula for the choice of ak:

ak ¼ωmin
i

fd2ik; i¼ 1…cg; ð8Þ

withωA ½0:9;0:99�, thus keeping the square of all distorted distances
positive. Using ω¼ 1 would reduce GIFP-FCM to HCM.

It is important to remark that both of the above improved
clustering models kept FCM's prototype update formula given
in Eq. (4).

Lately, these improved FCM clustering models were involved in
several applications [6,7].

2.3. The suppressed FCM algorithm

The suppressed fuzzy c-means algorithm was introduced in
[12], having the declared goal of reducing the execution time of
FCM by improving the convergence speed, while preserving its
good classification accuracy. The s-FCM algorithm does not mini-
mize JFCM. Instead of that, it manipulates with the AO scheme of
FCM, by inserting an extra computational step in each iteration,
placed between the partition update formula (3) and prototype
update formula (4). This new step deforms the partition (fuzzy
membership functions) according to the following rule:

μik ¼
1�αþαuik if i¼ arg max

j
fujkg

αuik otherwise;

8<
: ð9Þ

where μik (i¼ 1…c, k¼ 1…n) represents the fuzzy memberships
obtained after suppression. During the iterations of s-FCM, these
suppressed membership values μik will replace uik in Eq. (4).

Suppression can be explained in words as follows: in each
iteration, clusters compete for each input vector, and the prototype
situated closest wins the competition. Fuzzy memberships of the
given vector with respect to any non-winner class are proportion-
ally suppressed via multiplication with the previously defined
value of α, while the winner fuzzy membership is increased such
that the modified membership values μik still fulfil the probabil-
istic constraint (2).

In paper [37] we have shown that the proportional suppression
of non-winner fuzzy memberships is mathematically equivalent
with a virtual reduction of the distance between the winner
cluster's prototype and the given input vector. There we proved
that in any iteration, for any input vector xk and its winner class
with index w there exists a virtually reduced distance δwkodwk for

which

μwk ¼
δ�2=ðm�1Þ
wk

δ�2=ðm�1Þ
wk þ∑c

j ¼ 1;jawd
�2=ðm�1Þ
jk

ð10Þ

and

μik ¼
d�2=ðm�1Þ
ik

δ�2=ðm�1Þ
wk þ∑c

j ¼ 1;jawd
�2=ðm�1Þ
jk

8 iaw: ð11Þ

This virtual reduction of distance is explained in Fig. 2.
We also defined a quasi-learning rate η of the s-FCM algorithm,

in an analogous way to the learning rate of competitive algorithms
[37], and deduced its formula:

ηðm;α;uwkÞ ¼ 1�δwk

dwk
¼ 1� 1þ1�α

αuwk

� �ð1�mÞ=2
: ð12Þ

The learning rate η depends on two parameters of the s-FCM
algorithm (namely m and α), and the winner fuzzy membership
function (uwk) of the given input vector xk.

The literature has shown some of the possible advantages of
suppression [12,19–21,32,35,39], motivating us to employ Eq. (12) to
define a variety of novel ways of suppression for the FCM algorithm.

3. Proposed methodology

The suppressed FCM algorithm, as proposed by Fan et al. [12],
works with a constant suppression rate. Varying the suppression
rate could possibly occur in three different ways:

1. Time variant suppression means to apply a suppression rate
that varies from iteration to iteration as a function of the

Fig. 2. The effect of suppression: cluster wk¼2 is the winner here, as v2k is the
closest prototype from vector xk . The virtually reduced distance provides an
increased membership degree to the winner cluster, while all non-winner member-
ships will be proportionally suppressed.

Fig. 1. Multimodal fuzzy membership functions in a single dimensional problem, at various values of the fuzzy exponent m. The phenomenon escalates as the fuzzy
exponent grows.
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iteration count. This was applied, for example, by Hung
et al. [19].

2. Context sensitive or data sensitive suppression means to define a
time invariant rule of suppression, which provides a dedicated
suppression rate αk to each input vector xk.

3. Time and context variant suppression means to combine both
previous variation models in a single suppression rule.

Considering the fact that suppression aims at achieving a quicker
convergence and provides improved partitioning compared to FCM, it

Fig. 3. Characteristics of eight suppression schemes: the evolution of the context dependent suppression rate (αk) and the quasi-learning rate (η), both plotted against the
winner fuzzy membership uw. Unless otherwise specified, these curves represent the m¼2 case. Presented suppression schemes are (a) gsα-FCM or conventional s-FCM [12],
having constant suppression rate α; (b) gsθ-FCM uses constant learning rate θ; (c)–(e) suppression schemes with learning rate defined as a function of winner
fuzzy membership uw, namely (c) gsρ-FCM uses η¼ 1�ρuw (left diagram plots characteristics for m¼2,3,4 cases), (d) gsβ-FCM uses η¼ 1�uβ=ð1�βÞ

w , (e) gsκ-FCM uses
η¼ ½1þð2κ�1Þ sin ðπuwÞ�=2; (f)–(h) suppression schemes defined by a direct formula between μw and uw, namely (f) gsτ-FCM uses μw ¼ ðuwþτÞ=ð1þuwτÞ, (g) gss-FCM uses
μw ¼ usw , (h) gsξ-FCM uses μw ¼ sin ξðπuw=2Þ.
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is not advisable to change the suppression rule in every iteration. This
is why in the following, we will exploit the possibilities of the second
generalization way, namely we will define some specific suppression
rules and will apply them until the convergence is achieved. All
algorithms proposed in this section will be called generalized sup-
pressed fuzzy c-means (gs-FCM) clustering, but there will be several
types of them.

Throughout this section, we will study algorithms that apply
context dependent suppression rules, which employ a dedicated
suppression rate αk for each input vector xk. The value of αk never
depends on other input vectors xl, ka l. That is why, for the sake of
simplicity, we will denote by uw (instead of uwk (or the even more
precise uwkk, as w also depends on k)) the largest fuzzy member-
ship function of vector, xk, before suppression.

Fig. 3 presents the characteristics of eight types of suppressed
FCM algorithms, the first of which—shown in Fig. 3(a) is the
conventional version introduced by Fan et al. [12]. Each of Fig. 3
(a)–(h) contains two subplots: on the left side the suppression rate
αk is plotted against the winner fuzzy membership uw, while
on the right side the dependency between the quasi-learning rate
η and winner fuzzy membership function uw is indicated. The
algorithms presented in Fig. 3(b)–(h) will be described in the
following.

3.1. Learning rate defined as a function of the winner
fuzzy membership

In this section we will suppose that the QLR varies according
to a function of the winner membership: η¼ f ðuwÞ, where f :
½0;1�-½0;1� is a continuous function. In this case, the context
dependent suppression rate becomes

η¼ f ðuwÞ ) 1� 1þ1�αk

αkuw

� �ð1�mÞ=2
¼ f ðuwÞ

) 1�αk

αkuw
¼ ð1� f ðuwÞÞ2=ð1�mÞ �1

) αk ¼ ½1�uwþuwð1� f ðuwÞÞ2=ð1�mÞ��1: ð13Þ
For the special case of constant learning rate we use η¼ f ðuwÞ ¼ θ

with θA ½0;1�. A learning rate that linearly decreases with the winner
fuzzy membership can be defined by f ðuwÞ ¼ 1�ρuw with 0rρr1.

Let us further define two more such functions: f ðuwÞ ¼ 1�uβ=ð1�βÞ
w

with parameter βA ½0;1Þ and f ðuwÞ ¼ 1
2½1þð2κ�1Þ sin ðπuwÞ� with

parameter κA ½0;1�. Each of these functions deduces a suppression
rule from Eq. (13). The obtained suppression rules are indicated in the
first four rows of Table 1. The algorithms derived from these four
suppression rules will be referred to as generalized fuzzy c-means of
type θ, ρ, β, and κ.

Fig. 3(b)–(e) exhibits the characteristics of the above-described
suppression schemes. On the right side of each figure, we have the

variation of the learning rate against the winner fuzzy member-
ship for various values of the parameter showing the definition of
the given generalized suppression rule. On the left side of each
figure, the variation of the obtained suppression rate αk against
the winner fuzzy membership uw is displayed, under various
constraints. Although they stem from the same equation, the
suppression rules give different characteristics in this graphical
representation.

3.2. Direct formula between μw and uw

According to this approach, we may formulate a direct depen-
dence rule between the winner fuzzy membership before and
after suppression. In the general case, we may write μw ¼ gðuwÞ
with g : ½0;1�-½0;1� and gðxÞZx8xA ½1=c;1�. Eq. (9) allows us to
write

μw ¼ gðuwÞ ) 1�αkþαkuw ¼ gðuwÞ
) αkð1�uwÞ ¼ 1�gðuwÞ

) αk ¼
1�gðuwÞ
1�uw

: ð14Þ

Let us write a few such direct relations. For example, let us
employ μw ¼ usw with parameter sA ½0;1�, and μw ¼ ½ sin ðπuw=2Þ�ξ
with parameter ξA ½0;1�. The obtained suppression rules are
indicated in the last two rows of Table 1. The algorithms derived
from these suppression rules will be referred to as generalized
fuzzy c-means of type s and ξ. Further on, let us derive the
generalized fuzzy c-means of type τ from the following formula
inspired by the relativistic speed addition:

μw ¼ uwþτ
1þuwτ

) 1�αkþαkuw ¼ uwþτ
1þuwτ

) αkð1�uwÞ ¼ 1� uwþτ
1þuwτ

) αk ¼
1þuwτ�uw�τ
ð1�uwÞð1þuwτÞ

) αk ¼
1�τ

1þuwτ
; ð15Þ

with parameter τ ranging between 0 and 1. The above formula holds
for any uwo1. When uw¼1, the suppression rate is irrelevant.
Fig. 3(f)–(h) shows the characteristics of the three different suppres-
sion rules defined along direct formulas between μw and uw.

3.3. The gs-FCM algorithm

So far we have introduced seven generalized suppression rules,
each governed by a parameter that can take an infinite number
of different values. A limited number of these values (one or
two of them) reduce the generated algorithm to FCM or HCM,
while every other parameter value defines a new clustering model.

Table 1
Proposed generalized suppression rules.

Algorithm Parameter Definition Suppression formula

gsθ-FCM θA ½0;1� η¼ θ αk ¼ ½1�uwþuwð1�θÞ2=ð1�mÞ��1

gsρ-FCM ρA ½0;1� η¼ 1�ρuw αk ¼ ½1�uwþρ2=ð1�mÞuð3�mÞ=ð1�mÞ
w ��1

gsβ-FCM βA ½0;1Þ η¼ 1�uβ=ð1�βÞ
w αk ¼ ½1þuwðu2β=ð1�mÞð1�βÞ

w �1Þ��1

gsκ-FCM κA ½0;1�
η¼ 1

2
½1þð2κ�1Þ sin ðπuwÞ� αk ¼ 1�uwþuw

1
2
�2κ�1

2
sin ðπuwÞ

� �2=ð1�mÞ" #�1

gsτ-FCM τA ½0;1� μw ¼ uwþτ

1þuwτ
αk ¼

1�τ

1þuwτ
gss-FCM sA ½0;1� μw ¼ usw αk ¼

1�usw
1�uw

gsξ-FCM ξA ½0;1�
μw ¼ sin

πuw

2

� �ξ

αk ¼
1� sin πuw

2

� �ξ

1�uw
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The suppression rules introduced above are summarized in
Table 1. Further suppression rules can be defined similar to the
ways presented in Sections 3.1 and 3.2.

The proposed algorithm can be summarized as follows:

1. Set the number of clusters c, and the value of the fuzzy exponent
m41.

2. Initialize cluster prototypes according to some intelligent principles
(or by selecting random input vectors for each prototype).

3. Choose suppression rule and set the value of its parameter,
according to Table 1.

4. Compute fuzzy membership with the conventional formula of
FCM, Eq. (3).

5. For each input vector xk, find the winner cluster, set w equal to
the index of the winner cluster, and compute the suppression
rate αk according to the suppression rule, with the correspond-
ing formula from the last column of Table 1.

6. For each input vector xk, compute suppressed fuzzy member-
ships with the conventional suppression formula given in
Eq. (9), using the suppression rate αk.

7. Update cluster prototypes using the suppressed fuzzy member-
ships, as in the original suppressed FCM algorithm.

8. Repeat steps 4–7 until the norm of the variation of the cluster
prototypes reduces under a predefined constant ε.

4. The relation between suppressed FCM and GIFP-FCM

In order to unify the theory of FCMwith various kinds of improved
partitions and the theory of suppressed FCM, let us introduce an
objective function, which slightly differs from JGIFP�FCM. The difference
consists in the double indexing of reward term's parameter:

JU ¼ ∑
c

i ¼ 1
∑
n

k ¼ 1
um
ikd

2
ikþ ∑

n

k ¼ 1
aik ∑

c

i ¼ 1
uikð1�um�1

ik Þ: ð16Þ

This objective function allows us to define the reward term in such a
way that parameter aik varies according to the referred cluster i and
input vector with index k. The optimization formulas of JU deduced
from zero gradient conditions using Lagrange multipliers are

u⋆
ik ¼

ðd2ik�aikÞ�1=ðm�1Þ

∑c
j ¼ 1ðd

2
jk�ajkÞ�1=ðm�1Þ 8 i¼ 1…c; 8 k¼ 1…n: ð17Þ

for partition updating, while the cluster prototypes are updated with
the standard FCM's formula given in Eq. (4).

Obviously, JU reduces to JGIFP�FCM if we choose a1k ¼ a2k ¼⋯¼
ack ¼ ak for any k¼ 1…n.

On the other hand, we showed that s-FCM and every version of
gs-FCM only change one of the distances d1k, d2k, …, dck, for any
k¼ 1…n. They all virtually reduce the distance between the input
vector and the closest (winner) cluster prototype, namely dwk

where w¼ arg minifdik; i¼ 1…cg. Consequently, if we choose

aik ¼
d2wk 1� 1þ 1�αk

αku
ðFCMÞ
wk

� �1�m
" #

if i¼w and αk40

d2wk if i¼w and αk ¼ 0
0 otherwise

8>>>><
>>>>:

; ð18Þ

where uðFCMÞ
wk stands for the winner fuzzy membership value of

vector xk obtained using the standard FCM partition update
formula, then the optimization of JU will perform exactly the same
iterations as gs-FCM (or s-FCM) leading to the same results.

Consequently we can affirm that s-FCM and gs-FCM are optimal
algorithms to the same extent as GIFP-FCM, as they all optimize JU.

5. Results and discussion

5.1. Evaluation criteria

A series of experimental tests was performed on standard test
data sets, which contained ground truth information for evalua-
tion purposes. Our aim was to find those suppression rules, which
provide the highest number of correct decisions and best value
of cluster validity indexes (CVI). We employed cluster validity

Table 2
Accuracy test results using the WINE data set: for each algorithm and each fuzzy
exponent, the average number of correct decisions (out of 178) is exhibited,
maximized with respect to the suppression parameter. Algorithms are ranked
according to their observed accuracy.

Algorithm Fuzzy exponent m

1.4 1.7 2.0 2.4 2.8 3.2

FCM 170.000 170.000 169.000 166.000 163.000 159.000

gsξ-FCM 170.072 171.448 171.602 172.022 172.476 172.488
gsκ-FCM 170.554 171.480 171.494 171.444 171.538 171.606
gsθ-FCM 170.510 170.966 170.988 170.694 171.548 171.606
gsτ-FCM 170.500 170.508 170.532 170.586 170.626 170.704
gss-FCM 170.502 170.508 170.524 170.578 170.608 170.638
gsα-FCM 170.496 170.486 170.514 170.534 170.584 170.610
gsβ-FCM 170.486 170.000 170.000 169.828 169.826 169.848
gsρ-FCM 168.804 168.792 168.790 168.840 169.716 169.770

Table 3
Accuracy test results using the WINE data set: for each algorithm and each fuzzy
exponent, the count of parameter values (out of 101) is indicated for which gs-FCM
was found more accurate than FCM at the given value of m. Algorithms are ranked
according to their observed accuracy.

Algorithm Fuzzy exponent m

1.4 1.7 2.0 2.4 2.8 3.2

gsτ-FCM 41 41 84 99 99 100
gsξ-FCM 5 32 84 101 101 101
gsα-FCM 29 30 77 100 100 100
gss-FCM 28 30 75 100 100 100
gsκ-FCM 16 35 74 101 100 101
gsθ-FCM 15 26 71 99 99 100
gsβ-FCM 7 0 32 99 99 99
gsρ-FCM 0 0 0 101 101 101

Table 4
Accuracy test results using the WINE data set: for each algorithm and each fuzzy
exponent, the count of parameter values (out of 101) is indicated for which gs-FCM
was found more accurate than FCM at its ideal setting. Algorithms are ranked
according to their observed accuracy.

Algorithm Fuzzy exponent m

1.4 1.7 2.0 2.4 2.8 3.2

gsτ-FCM 41 41 40 36 38 39
gsξ-FCM 5 32 44 51 54 55
gsκ-FCM 16 35 44 47 50 56
gsθ-FCM 15 26 36 43 47 51
gss-FCM 28 30 23 25 26 27
gsα-FCM 29 30 18 17 19 22
gsβ-FCM 7 0 0 0 0 0
gsρ-FCM 0 0 0 0 0 0
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indexes like the Xie–Beni index [40] defined as

IXB ¼
∑c

i ¼ 1∑
n
k ¼ 1u

2
ik Jxk�vi J2

nðminia j Jvi�vj J Þ
; ð19Þ

its extended version proposed by Pal and Bezdek [33]:

IXB ¼∑c
i ¼ 1∑

n
k ¼ 1u

m
ik Jxk�vi J2

nðminia j Jvi�vj J Þ
; ð20Þ

and the Fukuyama–Sugeno index [13] computed as

IFS ¼
1
n

∑
c

i ¼ 1
∑
n

k ¼ 1
um
ik ðJxk�vi J2� Jvi�x J2Þ; ð21Þ

where x ¼ ð1=nÞ∑n
k ¼ 1xk stands for the grand mean of the input

vectors. The lowest value of these CVIs indicates the most valid
clusters.

Fig. 4. Results of clustering the normalized WINE data set using various suppression rules. Each image plots the average number of correct decisions (out of 178 input
vectors) against the value of the suppression parameter (α, θ, ρ, β, κ, τ, s, or ξ). Each image contains three graphs, showing the performance of the given gs-FCM algorithm for
mAf1:4;2:0;3:2g.

Fig. 5. Results of clustering the normalized WINE data set using various suppres-
sion rules. The number of correct decisions (out of 178) is plotted against the value
of fuzzy exponent m, in case of some chosen suppression rules and given values of
parameters.
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5.2. Tests on the WINE data set

The proposed generalized suppression schemes underwent
detailed numerical tests involving the 13-dimensional WINE data set
[2], which contains 178 input vectors, grouped into three classes of a
different cardinality. The data set also contains a label for each vector,
which is used as ground truth at the evaluation of accuracy. The WINE
data vectors were linearly normalized in each dimension into the [0,1]
interval.

The first criterion to evaluate accuracy will be the number of
correct decisions out of 178. The conventional FCM algorithm, which

we use as reference, gives 170 correct decisions for fuzzy exponent
mo1:85; asm rises beyond this threshold, the accuracy of FCM drops
quickly.

All seven proposed generalized suppression schemes, together
with the s-FCM proposed by Fan et al. [12], were tested in various
circumstances:

1. various values of the fuzzy exponent mA ½1:2;3:2�, covering the
range recommended in [18];

2. suppression parameter ranging from 0 to 1 in steps of 0.01;
3. 500 different, randomly chosen initialization sets of the cluster

prototypes, but the same ones for each algorithm and each
parameter value. Initialization vectors in all 500 cases were chosen
randomly, but the distance between any two vectors in the same
set—in the normalized 13-dimensional space—was at least 1.

For each algorithm and each suppression parameter value,
we computed the average number of correct decisions (ANCD)
obtained from the 500 different runs. Then we selected the
maximum value of ANCD for each algorithm, along the domain
of definition of the suppression parameter. These values are
indicated in Table 2, separately for six different values of the fuzzy
exponent. This table ranks the applied suppression rules by their
best achieved accuracy. With the exception of suppression rule
of type ρ, all proposed algorithms performed better than FCM,
and five out of seven generalized suppression rules proved more
accurate than the conventional s-FCM.

Fig. 7. WINE data clustering results: cluster validity indexes of the six most accurate suppression rules, for various values of fuzzy exponent m, plotted against the
suppression parameter of each approach. Most suppression rules have wide ranges of their suppression parameter, for which the clusters are more valid than in FCM.

Fig. 6. Convergence speed of various gs-FCM algorithms, compared to FCM. The
number of necessary iterations to achieve a predefined convergence level is plotted
against the fuzzy exponent m. The vertical axis is logarithmic.
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Tables 3 and 4 summarize the comparison of the accuracy
of each suppression rule with the performance of FCM. For each
algorithm, the suppression parameter varied from 0 to 1 in steps of
0.01, and the number of correct decisions averaged along the 500
different random initializations was compared with the number of
FCM's correct decisions. Table 3 indicates in how many cases (out of
101) these suppression rules proved more accurate than FCM at the
given fuzzy exponent m. Table 4 indicates in how many cases (out of
101) these suppression rules had more correct decisions than 170, the
highest score reached by FCM under any circumstances. Both these
tables rank the suppression rules according to their clustering
accuracy.

The s-FCM algorithm, as proposed in [12], proved to be more
accurate than FCM, at constant suppression rate 0:6oαo0:8. The
difference is most relevant in case of m42.

The generalized suppression schemes of type τ and s per-
formed quite similar to s-FCM. Suppressions of type κ, θ and ξ

proved to have relevant advantage in accuracy over s-FCM and
FCM as well. The highest achieved average number of correct
decisions was given by suppression rule of type ξ at m� 3 and
ξ40:75. The 172.5 correct decisions represent approximately 30%
less misclassifications than in case of FCM in its best setting.

On the other hand, suppression rules of type ρ and β led to
worse accuracy that FCM, showing that not every generalized
suppression rule is useful (Fig. 4).

Fig. 5 exhibits some of the suppression rules and parameter
values with the highest accuracy achieved on the WINE data set.
These graphs plot the average number of correct decisions of
the chosen algorithms against the value of the fuzzy exponent m.
FCM visibly becomes weak above m42, while most of the chosen
gs-FCM algorithms have their strongest accuracy in this area.

Fig. 6 relates on the efficiency of the presented algorithms,
showing the number of necessary iterations to reach a certain
level of convergence (ε¼ 10�10). One iteration of any gs-FCM is

Fig. 8. Cluster validity indexes obtained from Breast cancer data clustering: for each studied suppression rule, black curves represent the average value of CVI computed
along the valid range of fuzzy exponent m, while the gray area indicates the minimum–maximum range of each CVI.

Table 5
Accuracy of clustering the Breast cancer data: besides the outcome of FCM, we recorded the highest number of correct decisions achieved by each algorithm, along with the
intervals where they were achieved, and where they performed better than FCM.

Algorithm m¼1.5 m¼2.0 m¼2.5 m¼3.0

Correct
decisions

Best Better
than FCM

Correct
decisions

Best Better than
FCM

Correct
decisions

Best Better than
FCM

Correct
decisions

Best Better
than
FCM

FCM 667 666 667 668
gsα-FCM 670 αo0:18 αo0:89 670 αo0:16 αo0:98 670 αo0:22 αo0:86 670 αo0:30 αo0:77
gsθ-FCM 670 θ40:48 θ40:06 670 θ40:60 θ40:02 670 θ40:80 θ40:22 670 θ40:90 θ40:49
gsρ-FCM 670 ρo0:84 Any ρ 670 ρo0:77 Any ρ 670 ρo0:63 Any ρ 670 ρo0:44 Any ρ

gsβ-FCM 670 β40:58 β40:10 671 ½0:75;0:85� β40:03 671 ½0:68;0:86� β40:18 671 ½0:70;0:86� β40:10
gsκ-FCM 670 κ40:47 Any κ 670 κ40:60 Any κ 671 κ40:95 κ40:34 671 κ40:94 κ40:52
gss-FCM 670 s40:74 s40:07 670 s40:75 s40:02 670 s40:70 s40:07 670 s40:67 s40:17
gsτ-FCM 670 τo0:14 τo0:87 670 τo0:12 τo0:97 670 τo0:15 τo0:87 670 τo0:17 τo0:64
gsξ-FCM 670 ξo0:33 Any ξ 670 ξo0:28 Any ξ 670 ξo0:22 Any ξ 670 ξo0:23 ξo0:85
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computationally more costly than in FCM, because they perform
extra computations to suppress the partition. However, the
30–80% less iterations performed by the gs-FCM schemes assure
a shorter overall execution time for the proposed algorithms,
especially for fuzzy exponents m42.

Fig. 7 is a repository of CVIs obtained for the 6 best performing
suppression rules and three values of the fuzzy exponent m, along
the whole range of each suppression parameter. Each of the 18
subplots contains three curves: the solid, dotted, and dashed
lines indicate the values of Xie–Beni, extended Xie–Beni, and
Fukuyama–Sugeno indexes, respectively. For m¼2.0 the two Xie–
Beni indexes coincide. Clusters are more valid when the CVI value
is low. The most important thing reflected by Fig. 7 is that FCM
(equivalent to α¼ 1, θ¼ 0, s¼ 1 or τ¼ 0) produces the least valid
clusters. Further on, suppressing FCM apparently has a beneficial
effect on cluster validity, mostly at larger values of m. The best
overall cluster validity belongs to the gsξ�FCM clustering model,
but it does not have a significant lead over the others.

5.3. Tests on breast cancer data

We also tested the proposed generalized suppression schemes
to cluster the 9-dimensional vectors of the Breast Cancer Wiscon-
sin data set [2], which contains 699 input vectors, grouped into
two classes of a different cardinality. Although in each dimension,
the vectors range between 1 and 10, we applied linear normal-
ization to the [0,1] interval. All proposed suppression schemes
were tested in various circumstances: fuzzy exponent varying in
range 1.2–3.0 with steps of 0.1, suppression parameters covering
their whole range in steps of 0.01, and 10 different random
initialization scenarios chosen in the same way as in WINE data
sets.

The conventional FCM algorithm used as reference gives
666–668 correct decisions out of 699 depending on the value of
the fuzzy exponent. Table 5 summarizes the accuracy report of
each suppression rule, giving the best achieved number of correct
decisions, the range of parameter value where this best score was
achieved, and the interval where the suppressed algorithm per-
formed better than FCM. Apparently all tested algorithms have
wide ranges of their suppression parameter where they show
better accuracy than FCM. The lowest misclassification rates are
achieved by suppressions of type β and κ.

Fig. 8 reflects the measure of cluster validity for all tested
suppression rules, obtained from the analysis of breast cancer data.
For each algorithm and each suppression parameter value, we
extracted the minimum, maximum, and average values of the CVIs,
obtained for various fuzzy exponent values in range 1.2–3. Again in
this case, the most valid clusters were produced by suppression
rule ξ. Apparently all suppression schemes lead to clusters with
comparable validity to those of FCM.

5.4. Tests on large amount of data

The proposed gs-FCM clustering models underwent some tests
using a specially constructed artificial data set. These tests are
intended to reveal some advantages of suppression.

The data set contains n¼10,000 two-dimensional vectors, having
normal distribution around three fixed vectors: n1 vectors around
ν10 ¼ ð0; �2Þ, n2 vectors around ν20 ¼ ð0;2Þ, and n3 vectors around
ν30 ¼ ð10;0Þ. We used n35n1 ¼ n2. The input vectors are presented
in Fig. 9(a) for the n3 ¼ 20 case. These vectors will be grouped into
c¼3 clusters, using FCM and the proposed algorithms.

Fuzzy c-means was applied first to show the adverse effect of
the multimodal fuzzy membership functions. Vectors situated
on the boundary between clusters 1 and 2 have a considerable
(non-zero) membership with respect to the third cluster. Because

there are several such input vectors, in a number comparable or
possibly greater than n3, they attract the prototype of the third
cluster. The studied parameter will be the final horizontal coordi-
nate of the third cluster's prototype v3, which in ideal conditions
should be 10. FCM was employed using several values of the fuzzy
exponent. Results are exhibited in Fig. 9(b). When n3 ¼ 200 vectors
are in the distant, smaller cluster, FCM can distinguish this
third cluster from the other two as long as the fuzzy exponent is
mo3:183. Even below this limit, cluster prototype v3 drifts
towards the other two as m grows. Above this limit, all three
cluster prototypes will be in the left sided spot of n�n3 ¼ 9800
vectors. When we choose n3 ¼ 20, the limit value of the fuzzy
exponent is 1.585: Fig. 9(a) indicates the final cluster prototypes
given by FCM at m¼1.5 and m¼2.

The situation is completely different if we suppress the FCM
partition. In any suppressed partition, the effects of the multi-
modality are reduced. Fig. 9(c) shows the horizontal position of
the third cluster obtained by three different suppression rules at

Fig. 9. 2D clustering problemwith n¼ 104 input vectors, two large and overlapping
clusters and a third, distant and small one: (a) FCM clustering fails to create c¼3
correct clusters above a certain limit of the fuzzy exponent m. (b) The abscissa of
the final third cluster prototype, given by FCM, plotted against fuzzy exponent m.
The two curves clearly show under what constraints of m can FCM distinguish a
small cluster of n3 ¼ 20 or n3 ¼ 200 elements from the other two, large clusters.
(c) The abscissa of the final third cluster prototype, given by three different gs-FCM
variants, at fuzzy exponent m¼5. Generalized suppressed FCM of type ξaccurately
solves the problem for any value of its suppression parameter.
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extremely high value of the fuzzy exponent m¼5. For this given
problem, s-FCM (gsα-FCM) can distinguish the three clusters if the
suppression rate is set to αo0:718, gsτ-FCM does the same at
τ40:209, while gsξ-FCM creates fine partition in the whole range
of its suppression parameter. This way suppression helps small
separated groups to form an individual cluster, instead of being
merged with other larger groups.

5.5. Suppressed c-means partitions in image segmentation

Willing to demonstrate the partitions and fuzzy membership
functions that we can obtain, the proposed gs-FCM variants were
also tested for the segmentation of single channel intensity images.
An image whose intensity histogram contained three relevant peaks
was chosen as input data. Fig. 10 shows the variety of fuzzy
membership functions achieved with the tested algorithms, for
pixel intensities in range of 0–255. Fig. 10(a) and (b) shows the
outcome of FCM, and s-FCM with constant α¼ 0:5. The largest
membership function in s-FCM always has a granted lead of 1�α
above any non-winner membership. Non-winner memberships are
reduced proportionally and no other deformations of the curves are
present. However, with the introduction of the gs-FCM algorithms,
a wide variety of membership functions become available. Two
of them are demonstrated in Fig. 10(c) and (d). The choice of the
suppression rule and the value of the suppression parameter have
great influence on the shape of the curves. The multimodal
behavior of fuzzy membership functions is effectively reduced by
each suppression rule.

The set of suppression rules introduced in this paper is hardly
complete. We have only introduced a handful of suppression rules
using two different recipes. Anyone can define further suppression
rules, the recipe being given in Sections 3.1 and 3.2. In fact, some
variants of the gs-FCM algorithm are already present in the

literature [28], mostly without being identified as such. Details
in this matter we have reported in [38].

5.6. Further remarks

The clustering models introduced in this paper are fully
compatible with all extensions and applications of the fuzzy c-
means algorithm, as long as the alternate optimization scheme of
FCM is broken only by the suppression. This includes, for example,
solutions like

1. efficient implementation via aggregation of similar data [5,36,14],
or without storing the partition matrix [27];

2. fuzzy c-shell variants [9,29] and derivations [4,16] for the detection
of clusters with certain shapes.

6. Conclusion

In this paper we introduced several generalization schemes for
the suppressed fuzzy c-means algorithm. Each scheme has a
suppression parameter defined in the range between 0 and 1, and
each of these values leads to a different clustering algorithm. We
demonstrated the advantages of certain suppression models in a
multidimensional environment, both in terms of accuracy and
efficiency of the partitioning. We also demonstrated how the
generalized suppressed FCM combats the multimodality of FCM's
fuzzy partition. We proved the correctness of the results using
several cluster validity indexes. We identified existing, reportedly
accurate gs-FCM clustering models employed in image processing
problems, which had been introduced along a completely different
rationale. We introduced a generalized objective function using
which we unified the theories of FCM algorithms with improved
partition [17,42] and the suppressed FCM clustering models [12,37].

Fig. 10. Fuzzy membership functions given by suppressed FCM variants on a single channel intensity image: (a) FCM; (b) s-FCM at α¼ 0:5; (c) gs-FCM of type ξ at ξ¼ 0:65;
(d) gs-FCM of type β at β¼ 0:75. All these curves were obtained using fuzzy exponent m¼3. All suppression rules subdue the multimodality of the fuzzy membership
functions.
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This novel objective function also serves as evidence for the optimality
of the suppressed FCM algorithm variants. The easily implementable
optimal suppressed FCM variants will surely gain several applications
in the coming years.
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