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a  b  s  t  r  a  c  t

Intensity inhomogeneity or intensity non-uniformity (INU) is an undesired phenomenon

that represents the main obstacle for magnetic resonance (MR) image segmentation and

registration methods. Various techniques have been proposed to eliminate or compensate

the  INU, most of which are embedded into classification or clustering algorithms, they gen-

erally have difficulties when INU reaches high amplitudes and usually suffer from high

computational load. This study reformulates the design of c-means clustering based INU

compensation techniques by identifying and separating those globally working computa-

tionally costly operations that can be applied to gray intensity levels instead of individual

pixels. The theoretical assumptions are demonstrated using the fuzzy c-means algorithm,

but  the proposed modification is compatible with a various range of c-means clustering
c-Means clustering

Histogram

based INU compensation and MR image segmentation algorithms. Experiments carried out

using synthetic phantoms and real MR images indicate that the proposed approach pro-

duces practically the same segmentation accuracy as the conventional formulation, but

20–30  times faster.

© 2012 Elsevier Ireland Ltd. All rights reserved.

phantom [2].  Alternately, INU artifacts related to the shape,
1. Introduction

Magnetic resonance imaging (MRI) is a popular medical imag-
ing modality due to its high resolution and good contrast.
However, the automatic segmentation of such images is not
trivial because of the noise that may be present. Intensity
inhomogeneity or intensity non-uniformity (INU) represents
an undesired phenomenon in MRI, manifested as a slowly

varying bias field with possibly high magnitude that makes
pixels belonging to the same tissue be observed with different
intensities. Further on, INU is the main obstacle for intensity
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based segmentation methods: several efficient and accurate
removal techniques exist for high frequency noise [6],  but the
segmentation in the presence of inhomogeneities is a process
with significant computational load [26].

Inhomogeneities in magnetic resonance (MR) images are
usually categorized by their origin. Device related INU arti-
facts can be efficiently compensated via calibration methods
based on prior information obtained by using a uniform
of Technical and Human Sciences, Ş oseaua Sighişoarei 1/C, 540485

tia.ro (S.M. Szilágyi), bbenyo@iit.bme.hu (B. Benyó).

position, structure and orientation of the patient [15], are
much more  difficult to handle [26]. Several retrospective INU
compensation approaches have been reported, which include

erved.
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omomorphic filtering [5,9], polynomial or B-spline surface
tting based on intensity [23] or gradient [24], segmentation
ased techniques via maximum likelihood estimation [14],
arkov random fields [27], fuzzy c-means clustering [4,13,16],

r nonparametric estimation [7].  Further INU compensation
rocedures based on histogram involve high-frequency max-

mization [17], information maximization [25], or histogram
atching [18]. The most complete review of INU compensa-

ion techniques can be found in [26].
Probably the most widely used compensation tool is the

uzzy c-means (FCM) algorithm [3],  having several adaptations
or INU estimation and being combined with a series of fur-
her techniques. In this order, Pham and Prince introduced

 modified objective function producing bias field estima-
ion and containing extra terms that force this artifact vary
moothly [13]. They also provided a multi-grid technique to
peed up the computationally heavy algorithm, but even this
ay, their algorithm performs slowly. Liew and Hong created

 log bias field estimation technique that models the INU
ith smoothing B-spline surfaces [11]. Ahmed et al. estab-

ished a regularization operator that allowed the labeling of
 pixel to be influenced by its immediate neighbors [1].  This
pproach reduced some of the complexity of its ancestors,
ut the zero gradient condition that was used for bias field
stimation leads to several misclassifications. Siyal and Yu
16] provided a mean spread filtering method to smoothen
he estimated bias field in every cycle of the FCM algorithm,
hus reducing the amount of necessary computations, but
he result of the segmentation is not deterministic due to
he nature of the smoothing filter. Szilágyi et al. [21] applied

ixtures of fuzzy [3] and possibilistic [10] c-means clus-
ering models, and showed their beneficial effects on the
ccuracy.

The compensation of INU artifacts is a computationally
ostly problem, which demands highly efficient design and
mplementation. This paper demonstrates that the INU com-
ensation on a single-channel intensity image  via c-means
lustering models can be performed much more  efficiently
han it is reported in previous formulations. The operations
erformed during the iterations of the alternating optimiza-
ion (AO) scheme are separated into globally working ones
nd locally applied ones, and their execution is optimized
ccording to their necessities. Global criteria are applied to
ray intensities instead of individual pixels, which makes

 drastic reduction of the computational load. Using this
ovel formulation, and applying it to improved clustering
odels (e.g. [12,21])  combined with multi-stage INU com-

ensation, can make c-means clustering more  attractive on
he combined scales of accuracy and efficiency. Improving
he accuracy is not in the scope of this paper. Our main
oal is to reduce the execution time without damaging the
ccuracy.

The rest of the paper is organized as follows. Section
 describes the background works based on fuzzy c-means
lustering. Section 3 presents the details on the proposed
eformulation of the c-means clustering based INU com-

ensation and segmentation method. Section 4 provides a
ualitative and quantitative analysis and short discussion
f segmentation results. In Section 5 the conclusions are
ormulated.
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2.  Background  works

2.1. Conventional  FCM  clustering

The conventional FCM algorithm optimally partitions a set of
object data into a previously set number of c clusters based on
the iterative minimization of a quadratic objective function.
When applied to segment gray-scale images, FCM clusters the
intensity value of pixels xk, k = 1 . . . n. The objective function

JFCM =
c∑

i=1

n∑
k=1

um
ik (xk − vi)

2, (1)

is optimized under the so-called probability constraint

c∑
i=1

uik = 1 ∀ k = 1 . . . n, (2)

where uik ∈ [0, 1] is the fuzzy membership function indicating
the degree to which pixel k is assigned to cluster i, vi repre-
sents the centroid or prototype of the ith cluster, and m > 1
is the fuzzy exponent or fuzzyfication parameter. The con-
strained optimization of the objective function is achieved
using Lagrange multipliers and zero gradient conditions. The
minimization of the cost function is reached by alternately
applying the optimization of JFCM over {uik}, i = 1 . . . c, k = 1 . . . n
with vi fixed, and the optimization of JFCM over {vi}, i = 1 . . . c,
with uik fixed [3].  In each cycle, optimal fuzzy membership
and optimal cluster centroid values are computed using the
formulas:

uik =
(xk − vi)

−2/(m−1)∑c

j=1(xk − vj)
−2/(m−1)

∀ i = 1 . . . c, ∀ k = 1 . . . n, (3)

and

vi =
∑n

k=1um
ik

xk∑n

k=1um
ik

∀ i = 1 . . . c. (4)

After adequate initialization of cluster prototype values
vi, Eqs. (3) and (4) are alternately applied until the norm of
the variation of cluster prototypes stays within a previously
set bound ε. This algorithm is called the AO scheme of FCM.
Finally, each pixel k is assigned to the class wk where

wk = argmax
i
{uik, i = 1 . . . c}. (5)

2.2.  INU  compensation  models

The FCM approach formulated so far clusters the set of data
{xk}, which was recorded among ideal circumstances, con-

taining no noise. However, in the real case, the observed data
{yk} differs from the actual one {xk}. In this paper we  only
assume to handle the INU artifacts, by compensating during
segmentation.

dx.doi.org/10.1016/j.cmpb.2012.01.005
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Table 1 – The conventional algorithm.

01 t = 0

02 Set initial bias field b
(t=0)
k
= 0, ∀ k = 1 . . . n

03 Choose initial cluster prototypes v
(t=0)
i

04 Repeat
05 t ← t + 1

06 Compute new fuzzy partition u
(t)
ik

, ∀ i = 1 . . . c and
∀ k = 1 . . . n, using Eq. (10)

07 Compute new cluster prototypes v
(t)
i

, ∀ i = 1 . . .  c,
using Eq. (11)

08 Compute new estimated bias field b
(t)
k

, ∀ k = 1 .  . . n,
using Eq. (12)

09 Smoothen the estimated bias field using the chosen
filter

10 Until convergence occurs, that is
∑c

i=1
|v(t)

i
− v

(t−1)
i
| < ε
82  c o m p u t e r m e t h o d s a n d p r o g r a 

Literature recommends three different data variation mod-
els for intensity inhomogeneity. If we consider the INU as a
bias field, for any pixel k, k = 1 . . . n we will have

yk = xk + bk, (6)

where bk represents the bias value at pixel k [1,13,16]. In case
of gain field modeling [20], there will be a gain value gk for each
pixel k, such that

yk = gkxk. (7)

Finally, the so-called log bias approach in fact is a gain field
estimation reduced to bias computation using the logarithmic
formula [11]

log yk = log gk + log xk. (8)

Regardless of the used compensation model, the variation
of the intensity between neighbor pixels has to be slow. The
zero gradient conditions derived from FCM’s objective func-
tion does not fulfill this demand. Consequently, a smoothing
operation is necessary to assure this slow variation of the esti-
mated bias or gain field.

2.3.  Adaptation  of  FCM  to  bias  field  estimation

Using the notions introduced above, in case of estimating the
INU artifact as a bias field, the objective function becomes:

JFCM-b =
c∑

i=1

n∑
k=1

um
ik (yk − bk − vi)

2. (9)

Zero gradient conditions and Lagrange multipliers lead to the
following optimization formulas:

• For any pixel with index k = 1 . . . n and any cluster indexed
i = 1 . . . c, the fuzzy partition is built of membership functions
computed as:

uik =
(yk − bk − vi)

−2/(m−1)∑c

j=1(yk − bk − vj)
−2/(m−1)

. (10)

• For any cluster indexed i = 1 . . . c, we have:

vi =
∑n

k=1um
ik

(yk − bk)∑n

k=1um
ik

. (11)

• For any pixel with index k = 1 . . . n, we have the bias esti-
mated as:

bk = yk −
∑c

i=1um
ik

vi∑c

i=1um
ik

. (12)
The whole AO algorithm of bias estimation and fuzzy c-
means based segmentation is summarized in Table 1. This INU
estimation and compensation approach was applied by Siyal
and Yu [16].
11 Assign pixel with index k (k = 1 . . . n) to cluster with
index argmax

i
{uik, i = 1 . . . c}

3.  Methodology

When a clustering algorithm is required to perform quickly on
a large set of input data, the aggregation of similar input values
is an easily implementable choice. It is well known, that the
FCM algorithm in image  processing belongs to the segmenta-
tion methods that use only global information. This means
that pixels will be assigned to clusters based on their own
intensity (color), without regard to their position in the image.
Consequently, pixels with same intensity will belong to the
same clusters with the same membership degrees. Based on
this assumption, it is obvious that the FCM-based segmenta-
tion of single-channel intensity image  can be performed using
the histogram, clustering the intensity levels instead of indi-
vidual pixels. For further reading on quick, histogram based
segmentation of brain MR images with homogeneous inten-
sity, the reader is referred to [19].

On the other hand, when INU artifacts are present, local
conditions need to be involved into the compensation process,
because the level of the low-frequency noise that is present
must be estimated for each pixel individually. The main loop
of the AO algorithm of the conventional solution (FCM-b) con-
tains three formulas to be evaluated, which all contain the
locally estimated noise bk. These computations treat each
pixel separately, leading to a high computational load. Pix-
els that have similar intensities in the original image  cannot
be aggregated, as the locally present noise frequently makes
them different.

In the following, we will demonstrate that the problem can
be reformulated such a way, which allows us at the beginning
of each loop, to aggregate the similar pixels in the current com-
pensated image.  This way we get the possibility to perform
most part of the computations based on intensities, leading
to a drastic reduction of the computational load.

3.1. The  accelerated  approach

Let us consider the cost function of the bias estimation

approach, given in Eq. (9).  The input image  contains pixels
in order of 104–105, and intensity levels in order of 102–103. In
every iteration of the AO algorithm, we need to aggregate those

dx.doi.org/10.1016/j.cmpb.2012.01.005
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Table 2 – The proposed algorithm.

01 t = 0

02 Set initial bias field b
(t=0)
k
= 0, ∀ k = 1 .  . . n

03 Choose initial cluster prototypes v
(t=0)
i

04 Repeat
05 t ← t + 1

06 Compute new histogram h
(t)
l

, ∀ l ∈ �(t)

07 Compute new fuzzy partition u
(t)
il

, ∀ i = 1 . . . c and
∀ l ∈ �(t), using Eq. (18)

08 Compute new cluster prototypes v
(t)
i

, ∀ i = 1 . . . c,
using Eq. (21)

09 Compute auxiliary lookup table values
q

(t)
l

, ∀ l ∈ �(t), using Eq. (22)

10 Compute new estimated bias field b
(t)
k

, ∀ k = 1 . .  . n,
using Eq. (23)

11 Smoothen the estimated bias field using the chosen
filter

12 Until convergence occurs, that is
∑c |v(t) − v

(t−1)| < ε
c o m p u t e r m e t h o d s a n d p r o g r a m 

ixels, which bear the same intensity after having the current
stimated bias subtracted. That is why, we investigate the dis-
ribution of the composite variable yk− bk, which varies from
teration to iteration. Let us denote by h

(t)
l

the number of pix-
ls for which the compensated intensity in iteration t satisfies

k− bk = l. Obviously, if we denote by �(t) the range of possible
alues of yk− bk, we  will have

∑
l∈�(t) h

(t)
l
= n. As the matter of

act, h
(t)
l

with l ∈ �(t) represents the intensity histogram of the
ompensated image  in iteration t.

Using the above notations, we  can aggregate equal values
f yk−bk in the cost function without altering the sum, which

n iteration t will become:

FCM-qb =
c∑

i=1

∑
l∈�(t)

h
(t)
l

um
il (l − vi)

2. (13)

The update formulas for degrees of membership uil and
luster prototypes vi, i = 1 . . . c, l ∈ �(t) are obtained from the zero
radient conditions of the functional:

FCM-qb = JFCM-qb +
∑
l∈�(t)

�l

c∑
i=1

(
1 −

c∑
i=1

uil

)
, (14)

here �l represent the Lagrange multipliers. From the partial
erivatives with respect to uil, for any i = 1 . . . c, l ∈ �(t) we obtain:

∂LFCM-qb

∂uil
= 0 ⇔ mum−1

il
(l − vi)

2 − �l = 0 (15)

nd consequently

il =
[

�l

m

]−1/(m−1)
(l − vi)

−2/(m−1). (16)

On the other hand, the probabilistic constraint given in Eq.
2) leads to:

c

j=1

ujl = 1 ⇒ 1 =
[

�l

m

]−1/(m−1) c∑
j=1

(l − vj)
−2/(m−1). (17)

Eqs. (16) and (17) imply that for any compensated intensity
 ∈ �(t) and any cluster indexed i = 1 . . . c, we have the member-
hip update formula:

il =
(l − vi)

−2/(m−1)∑c

j=1(l − vj)
−2/(m−1)

, (18)

ne evaluation of the above formula computes the fuzzy labels
f h

(t)
l

pixels at the same time. The obtained fuzzy membership
alues do not depend on the current histogram.

Zero crossing conditions of the partial derivatives with
espect to cluster prototypes vi lead to:
∂LFCM-qb

∂vi
= 0 ⇔ −2

∑
l∈�(t)

h
(t)
l

um
il (l − vi) = 0, (19)
i=1 i i

13 Assign pixel with index k (k = 1 . . . n) to cluster with
index argmax

i
{ui,yk−bk

, i = 1 . . . c}

which can be further written∑
l∈�(t)

h
(t)
l

um
il l = vi

∑
l∈�(t)

h
(t)
l

um
il . (20)

Consequently, for any cluster indexed i = 1 . . . c, we  get the
update formula:

vi =
∑

l∈�(t) h
(t)
l

um
il

l∑
l∈�(t) h

(t)
l

um
il

. (21)

This formula is evaluated c times in every iteration, like in
case of conventional FCM-b, but here both the denominator
and divisor of the fraction sum up much fewer terms.

Obviously the estimated bias field has to treat each pixel
separately. But even here we can simplify the computations
by introducing some auxiliary variables and organizing them
into a lookup table. In this order, for any l ∈ �(t), let

ql =
∑c

i=1um
il

vi∑c

i=1um
il

. (22)

Subsequently, for any pixel with index k = 1 . . . n, we  have the
bias estimated as:

bk = yk − qlk
with lk = yk − b

(t−1)
k

. (23)

The AO scheme of the proposed objective function involves
repeating the application of update formulas given in Eqs. (18),
(21) and (23), until convergence is achieved. Pixels are assigned
according to their compensated intensity yk− bk, towards the
closest cluster prototype. The proposed compensation and
segmentation algorithm is summarized in Table 2.

4.  Results  and  discussions
Looking at the formulas used by the conventional and accel-
erated approach, we can realize the difference in theoretical
complexity of different steps. These theoretical values are

dx.doi.org/10.1016/j.cmpb.2012.01.005


84  c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 80–89

Table 3 – Computational complexity of algorithmic steps.

Algorithmic step Conventional (FCM-b) Accelerated (FCM-qb)

Partition updating O(nc2) O(ωc2)
Cluster prototype updating O(nc) O(ωc)
Bias estimation O(nc) O(n + ωc)

O(n
– 
Bias smoothing 

Histogram updating 

exhibited in Table 3, where ω stands for the cardinality of the
set � or the number of different intensity values in the current
compensated image.  Considering the fact that the number of
present gray intensities (ω) is less than the number of pixels
(n) in the image  by minimum two orders of magnitude, we can
state that the time consuming first three steps of the conven-
tional algorithm are replaced with much faster solutions in
the proposed algorithm.

Both the conventional and proposed approaches were
tested on artificial phantoms and real MR  images. Artificial

phantoms were created by adding slowly varying INU noise
to single-channel intensity images that contained two easily
separable regions of constant intensity. Real MR  images were

Fig. 1 – Execution time of one main loop, using the conventional
ratio (down), all represented against the number of pixels in the 

phantom images, segmented into c = 2 classes.
) O(n)
O(n)

taken from the Internet Brain Segmentation Repository [8].
All benchmark results were obtained on a PC with Athlon64
processor running at 2 GHz frequency.

Fig. 1 summarizes the averaged benchmark results of both
algorithms, obtained from 24 different artificial phantoms,
sampled at various resolutions. In case of two  classes, the
proposed formulation of the algorithm accelerates the exe-
cution about 15–25 times. It is also visible, that the speed-up
ratio slightly rises if we increase the size of the input phantom
image.
Fig. 2 shows the variation of the histogram of a phantom
image  during the iterative compensation. The two classes are
perfectly separated after 10–12 iteration cycles. The regions

 and accelerated approach (up), and the resulting speed-up
image (n). These benchmark results were  recorded using

dx.doi.org/10.1016/j.cmpb.2012.01.005
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Fig. 2 – The evolution of the histogram of an INU contam

he compensation produces are not piecewise constant, but
hey are easily separable, so the classification can be 100%
ccurate.

Fig. 3 exhibits the segmentation and INU compensation of a
wo-class phantom. Without compensation the segmentation
ails, but compensation makes the classes perfectly separable.

Real brain MR  images of different sizes, artificially contam-
nated with inhomogeneity were also fed to both algorithms.
hese images were segmented into c = 3 classes correspond-

ng to white matter (WM),  gray matter (GM), and cerebro-spinal
uid (CSF), respectively. Benchmark results averaged from the
utcome of the algorithm using 40 different real MR images
re exhibited in Fig. 4. The speed-up ratio is even higher than
n case of the phantoms: it varies between 28 and 32.

Fig. 5(a)–(e) shows the variation of the histogram of a brain
RI  image  segmented into three clusters, during the itera-

ive compensation. In this latter case, convergence requires

0–100 iterations. As the white matter and gray matter have
heir intensities close to each other, in the presence of noise,
heir histograms overlap, so their distributions cannot be

ig. 3 – Phantom segmentation into two classes: (a) original ima
c) successful segmentation with INU compensation.
d two-class phantom image, during the iteration cycles.

completely separated by INU compensation. This is a primary
source of misclassifications, equally present for both the con-
ventional and proposed approaches. The evolution of the three
cluster prototypes exhibited in Fig. 5(f) represents a typical
case of real MRI image  segmentation which converges after 60
iterations. Fig. 6 exhibits the intermediary and final results of
the segmentation of a real MR brain image.

As c � ω � n, the theoretical complexity values exhibited in
Table 3 suggest that the running time of the accelerated algo-
rithm hardly depends on the number of clusters. To confirm
this hypothesis, we  have fed various images to the algorithm,
setting the number of clusters c to values ranging from 2 to 8.
Fig. 7 summarizes the speed-up ratios, their averaged values
using 25 images, and their standard deviations as well. This
plot indicates that as we  increase the number of clusters at
the segmentation of an image,  the obtained speed-up ratios
keep rising indeed.
Fig. 8 shows the relative execution times of different steps
within one iteration of both approaches. The acceleration is
also evident in this figure: INU smoothing consists of the same

ge, (b) failed segmentation without INU compensation, and

dx.doi.org/10.1016/j.cmpb.2012.01.005
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Fig. 4 – Execution time of one main loop, using the conventional and accelerated approach (up), and the resulting speed-up
ratio (down), all represented against the number of pixels in the image. These benchmark results were  recorded using
phantom images, segmented into c = 3 classes.

Fig. 5 – (a)–(e) The evolution of the intensity distribution of an INU contaminated real MR image during the iteration cycles
and (f) the evolution of cluster prototypes during the iterations.

dx.doi.org/10.1016/j.cmpb.2012.01.005
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Fig. 6 – Brain segmentation into three classes: (a) original image, (b) estimated INU, (c) compensated image, and (d)
successful segmentation with INU compensation.
Fig. 7 – Average and standard deviation of the obtaine

Fig. 8 – Structure of the runti
d speed-up ratios, plotted against cluster count.

me in both approaches.

dx.doi.org/10.1016/j.cmpb.2012.01.005
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vs. im

r

Fig. 9 – Evolution of the misclassification rate 

operations in both approaches, but it takes less then 1% in the
conventional approach and 19% in the proposed algorithm. In
the conventional approach, partition updating represents the
highest computational load, while in the proposed approach,
the locally executed INU estimation and the newly introduced
histogram updating step are the longest processes.

Both approaches theoretically perform the same compu-
tations, so the accelerated approach should have exactly the
same accuracy as the conventional one. However, in practice,
there is a secondary source of errors in the proposed approach
due to the quantification error of the bias field. The conven-
tional algorithm may employ floating point representation of
the estimated bias field, while the proposed fast approach has
to quantify the bias in every iteration. During the performed
tests, bias quantification caused no more  than 1% increase
the number of misclassifications. Fig. 9 shows the slight effect
of the bias quantification upon the count of misclassified
pixels.

Further advantages of the proposed approach include:

• It is compatible with most INU modeling schemes enumer-
ated in Section 2.2.  Also in case of modeling INU as log-bias
field, the partition and cluster prototypes can be computed
using the histogram, just as we have shown in the bias field
formulation. However, in case of the gain field approach,
the cluster prototype update formula will include local fac-
tors. In this latter case, a lower speed-up ratio of 5–10 can
be achieved.

• The proposed method is insensitive to the chosen bias
smoothing procedure: the user has the freedom to apply
reported techniques like the mean spread filtering [16], or
the morphological criterion driven context dependent filter-
ing [20].

• The proposed method is not limited to fuzzy c-means clus-
tering. It can be similarly applied with mixed clustering
models presented in [12,21,22].
5.  Conclusion

In this paper, we  have reformulated the c-means clustering
based approach of INU compensation and segmentation of
age size in case of a typical case of real MRI.

magnetic resonance images, in order to drastically reduce the
processing time. We  have shown that the most time consum-
ing parts of the conventional algorithm’s iteration cycle can
be applied to individual gray intensities instead of individual
pixels. We  achieved an approach that performs the segmen-
tation of brain MR images 20–30 times faster, without causing
relevant change in terms of accuracy. The proposed algorithm
is highly compatible with various reported c-means clustering
based INU compensation techniques. With this increased exe-
cution speed, the c-means clustering approach may receive
a significantly higher popularity in the domain of MR  image
segmentation.
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