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Abstract

In this paper we deal with different type of dominating sets in de Bruijn
graphs and we prove a conjecture on perfect dominating sets.

1 Introduction

Let |A| = n. The de Bruijn graph is defined as:

B(n, k) = (V (n, k), E(n, k))

with V (n, k) = Ak as the set of vertices, and E(n, k) = Ak+1 as the set of
directed arcs. There is an arc from x1x2 . . . xk to y1y2 . . . yk if x2x3 . . . xk =
y1y2 . . . yk−1. For B(2, 3) see Fig. 1.
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Figure 1: The de Bruijn graph B(2, 3).

In a graph G = (V, E) a vertex y is dominated by a vertex x (or x
dominates y) if there exists an arc from x to y or x = y. A set of vertices
D ⊆ V is a dominating set of G if every vertex of G is dominated by
at least one vertex of D. The size of a set of least cardinality among
all dominating sets for G is called the domination number of G and any
dominating set of this cardinality is called a minimum dominating set for
G. When each vertex of G is dominated by exactly one element of D then
the set D is called a perfect dominating set of G. A vertex x d-dominate a
vertex y if there is a path from x to y in G of length at most d. A set D of
vertices is a d-dominating set in G if each vertex of G is d-dominated by
at least one vertex of D. This set D is a perfect d-dominating set (d-PDS)
if each vertex of G is d-dominated by exactly one vertex of D.
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Proposition 1. In the de Bruijn graph B(2, k) a minimum dominating

set has

⌈

2k

3

⌉

vertices.

Proof. Because of the two outgoing arcs from each vertex in B(2, k), a
vertex can dominate at most two other vertices. So, a dominating set has
at least ⌈2k/3⌉ vertices. We give a dominating set in a de Bruijn graph,
proves that this number is enough. Let us consider any vertex in the graph
as a binary representation of a natural number and let us refer to it by
its numerical value. So, the graph B(2, k) has the following vertices: 0, 1,
2, . . . 2k − 1. In the case k = 3 the dominating set has 3 vertices. The
vertex 4 dominates the vertices 0 and 1, the vertex 5 dominates 2 and 3
and finally 7 dominates 6. These result from the following:

4 dominates 0, 1
5 dominates 2, 3
6 dominates 4, 5 – eliminated (4 and 5 were already considered)
7 dominates 6

In the general case we get the following values:

2k−1 dominates 0 and 1

2k−1 + 1 dominates 2 and 3
. . .

2k−1 + 2k−2 − 1 dominates 2k−1 − 2 and

2k−1 − 1

2k−3 values eliminated
2k−1 + 2k−2 + 2k−3 dominates 2k−1 + 2k−2 and

2k−1 + 2k−2 + 1
. . .

2k−1 + 2k−2 + 2k−3 + 2k−4 − 1 dominates 2k−1 + 2k−2 + 2k−3 and

2k−1 + 2k−2 + 2k−3 + 1

2k−5 values eliminated
. . .

2k − 1 dominates 2k − 2 if k is odd,
nothing otherwise.

So, this dominating set has 2k − (2k−1 +2k−3 +2k−5 + . . .+2k−⌈k/2⌉+1)
vertices. It is easy to see (e.g. by induction) that this sum is equal to
⌈2k/3⌉.

A natural generalization of this proposition is the following.

Proposition 2. In the de Bruijn graph B(n, k) a minimum dominating

set has

⌈

nk

n + 1

⌉

vertices.

M. Livingston and Q. F. Stout proved in [2] the following result (The-
orem 2.12).

Proposition 3. For any d ≥ 1 and for k a positive integer of the form
(d + 1)m or (d + 1)m − 1 or k < d, let Tk denote a subset of the vertices
of B(2, k) defined as follows.
(i) T1 = T2 = . . . = Tk = {0},
(ii) T(d+1)(m+1)−1 = T(d+1)m−1 ∪ {j : 2(d+1)m−1 ≤ j ≤ 2(d+1)m − 1},

(iii) T(d+1)m = T(d+1)m−1 ∪ {2(d+1))m − 1 − s : s ∈ T(d+1)m−1}.
Then the set Tk is a perfect d-dominating set for B(2, k).
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Figure 2: Typical sets in 2-dominations in a de Bruijn graph (k = 5)
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Figure 3: A general set in 2-dominations in a de Bruijn graph. Values are taken mod
2k.

In [2] the following conjecture was set too: there is no perfect 2-
dominating set for B(2, k), when k − 1 is a multiple of 3. We prove this
conjecture in the following proposition.

Proposition 4. In the de Bruijn graph B(2, k) there is no perfect 2-
dominating set if k − 1 is a multiple of 3.

Proof. Let Nd(G, v) denote the set of vertices in the graph G = (V, E)
within distance d of vertex v. If D is a perfect d-dominating set for G then
{Nd(G, v) | v ∈ D} forms a partition of V . Let nd(G, v) = |Nd(G, v)| then
∑

v∈D
nd(G, v) = |V |.

Property 1. n2(B(2, k), v) = 4, 5, 6 or 7.

n2(B(2, k)), v) can differ from 7 only in the following cases (see Fig.
3).
p = 2p ⇒ p = 0 ⇒ n2(B(2, k), 0) = 4
p + 2k = 2p + 1 ⇒ p = 2k − 1 ⇒ n2(B(2, k), 2k − 1) = 4
2p + 2k = 4p ⇒ p = 2k−1 ⇒ n2(B(2, k), 2k−1) = 5
2p + 2k = 4p + 2 ⇒ p = 2k−1 − 1 ⇒ n2(B(2, k), 2k−1 − 1) = 5

If k is odd:
p + 2k = 4p + 2 ⇒ p = 2k−2

3
⇒ n2(B(2, k), 2k−2

3
) = 6

p + 2k+1 = 4p + 1 ⇒ p = 2k+1−1
3

⇒ n2(B(2, k), 2k+1−1
3

) = 6
If k is even:

p + 2k = 4p + 1 ⇒ p = 2k−1
3

⇒ n2(B(2, k), 2k−1
3

) = 6

p + 2k+1 = 4p + 2 ⇒ p = 2k+1−2
3

⇒ n2(B(2, k), 2k+1−2
3

) = 6
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Property 2. In B(2, k) if p d-dominates q, and q is even, then p d-
dominates (q+1), too. If p d-dominates q, and q is odd, then p d-dominates
(q − 1), too.

Property 3. If n2(B(2, k), v) = 5 then v cannot be in a 2-PDS.

This can be proved by direct computations. n2(B(2, k), v) = 5 only for
v = 2k−1 and v = 2k−1 − 1.
a) If 2k−1 is in a 2-PDS then 2k−1 + 1 cannot be in the 2-PDS, otherwise
2 is 2-dominated by both of them. But if 2k−1 + 1 is not in the 2-PDS
then it is 2-dominated together with 2k−1, so 2k−1 is dominated by two
vertices.
b) If 2k−1−1 is in a 2-PDS then 2k−1−2 cannot be in the 2-PDS, otherwise
2k − 4 is 2-dominated by both of them. But if 2k−1 − 2 is not in a 2-PDS
then it is 2-dominated together with 2k−1 − 1, so 2k−1 − 1 is dominated
by two vertices.

Property 4. In a 2-PDS there is at most one vertex v for which
n2(B(2, k), v) = 6.

For example 2k−1
3

and 2k+1−2
3

dominate each other.

Now we suppose that k = 3l +1 and l > 0. If we denote the number of
different type of vertices in a 2-PDS by A, B and C, we have the equation:

4A + 6B + 7C = 23l+1 = 2((23)l − 1) + 2

and we know based on the above properties that A is 0, 1 or 2 and B is 0
or 1. If we construct a matrix from the values of the expression 4A+6B−2
we can see that these are not divided by 7. So we got the fact that there
is no 2-PDS in B(2, 3l + 1).

M. Livingston and Q. F. Stout in [2] deal with the undirected case, too.
We can define the undirected version of the de Bruijn graph B(n, k) if we
change arcs to undirected edges. Let us denote by B∗(n, k) the undirected
de Bruijn graph. Now there is an edge between x1x2 . . . xk and y1y2 . . . yk

if x2x3 . . . xk = y1y2 . . . yk−1 or x1x2 . . . xk−1 = y2y3 . . . yk. We can give
all definitions about domination (and d-domination) in a very similar way.
In [2] we can read the fact that the undirected de Bruijn graph B∗(2, k)
has a perfect dominating set (PDS) for k=1 or 2, but has no PDS for k=3,
4 or 5. In the following we prove that B∗(2, k) has PDS only for k=1 or 2.

Property 5. n1(B
∗(2, k), v) = 3, 4 or 5.

We consider any vertex in the graph B∗(2, k), if we like it, too, as a bi-

nary representation of a natural number.So N1(B
∗(2, k), p) =

{

p, 2p, 2p +

1, ⌊p/2⌋, 2k−1 + ⌊p/2⌋
}

where every number are taken mod 2k. Obvi-

ously, 0 and 2k − 1 has only ”islands” with three vertices. Eg. 0 dom-
inates 0, 1 and 2k−1.There are two vertices with ”islands” of size four:
n1(B

∗(2, k), 2k−2 +2k−4 + . . .+2) = 4 and n1(B
∗(2, k), 2k−1 +2k−3 + . . .+

1) = 4 if k is an odd number and n1(B
∗(2, k), 2k−2 + 2k−4 + . . . + 1) = 4

and n1(B
∗(2, k), 2k−1 +2k−3 + . . .+2) = 4 if k is an even number. In other

words B∗(2, k) has two loops and two parallel edges between the alternate
0-1 words (see Fig. 1). Of course n1(B

∗(2, k), v) = 5 for all other vertices.

Property 6. There is only at most one vertex in a PDS with an ”island”
of size four.

This is obviously because of the structure of the graph.

Proposition 5. There is no PDS in B∗(2, k) if k > 2.
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Proof. Suppose that we have a PDS D in B∗(2, k). We deal with four
cases based on k mod 4. There is only one possibility for sizes of ”islands”
in all cases according to our properties:

a) 3 + 3 + 5t = 2k if k = 4l
b) 3 + 4 + 5t = 2k if k = 4l + 1
c) 4 + 5t = 2k if k = 4l + 2
d) 3 + 5t = 2k if k = 4l + 3.
In the first case a) there is no ”island” of size 4. So the two alternating

words is not in D, 2k−2+2k−4+. . .+22+1 6∈ D and 2k−1+2k−3+. . .+2 6∈ D.
We should dominate these words and there is only two possibilities: one of
them is 2k−3+2k−5+ . . .+2 ∈ D and 2k−1+2k−2 +2k−4+ . . .+22+1 ∈ D.
The other case is very similar. There is a symmetry between the words
by exchanging the letters (0 to 1 and 1 to 0), or by read the words from
the left to right and back. We use these simplification and deal with only
this case. Consider the word 2k−3 + 2k−5 + . . . + 2 + 1! We can not put
it to D, because 2k−3 + 2k−5 + . . . + 2 dominates 2k−4 + 2k−6 + . . . + 1
and 2k−3 + 2k−5 + . . . + 2 + 1 dominates it, too. We can not put in D
neither 2k−4 +2k−6 + . . .+1 nor 2k−1 +2k−4 +2k−6 + . . .+1 because these
are dominated by 2k−1 + 2k−3 + . . . + 2. But the other two neighbours of
2k−3 + 2k−5 + . . . + 2 + 1 are 2k−2 + 2k−4 + . . . + 22 + 2 and 2k−2 + 2k−4 +
. . . + 22 + 2 + 1. But both words dominate 2k−1 + 2k−3 + . . . + 2 + 1 and
this word is dominated by 2k−1 + 2k−2 + 2k−4 + . . . + 22 + 1. This is a
contradiction, so there is no PDS in B∗(2, 4l), and this proves the case a).

If k = 4l + 1 we need an ”island” of size 4 in a D. We explain
this case b) for k=5 only. Eg. 01010 ∈ D. 01010 dominates the set
01010, 10100, 10101, 00101. How can we dominate 11010 and 01011? These
are dominated by 10101 but this word is already dominated. 11010 domi-
nates the set 11010, 01101, 11101, 10101, 10100, the last two are dominated
by 01010. 01011 dominates the set 01011, 00101, 10101, 10110, 10111, the
second and third words are dominated by 01010. So we put eg. 11101 in
D! Now we can not to put 10111 in D, because these two words dominate
each other. Try to put 10110 in D! The problem is that 11011 is domi-
nated by both 11101 and 10110. This contradiction proves the case k = 5,
and we can speak about the case k = 4l + 1 similarly in general.

In case c) if we have a D, eg. 2k−2 + 2k−4 + . . . + 1 ∈ D, because
must be an ”island” in size 4. 2k−2 + 2k−4 + . . . + 1 dominates the set
2k−2 + 2k−4 + . . . + 1, 2k−1 + 2k−3 + . . . + 2, 2k−3 + 2k−5 + . . . + 2, 2k−1 +
2k−3 + . . .+2+1. We need to dominate 2k−2 +2k−4 + . . .+22 and 2k−1 +
2k−2+2k−4+. . .+22+1, too (these are two still not dominated neighbors of
2k−1+2k−3+. . .+2). But all the potential words 2k−1+2k−3+. . .+23+1 or
2k−1+2k−3+. . .+23 to 2k−2+2k−4+. . .+22 and 2k−2+2k−3+2k−5 . . .+2
or 2k−1+2k−2+2k−4+ . . .+2 to 2k−1 +2k−2+2k−4+ . . .+22+1 dominate
the same word, it is 2k−1 + 2k−2 + 2k−4 . . . + 22. This is a contradiction
again.

The last case d) is very similar to the case a), so we do not deal with
it.

The authors thank anonymous referee for his (her) comments and sug-
gestions.

References

[1] M. Lothaire, Combinatorics on words, Addison-Wesley, Reading, MA,
1983.

5



[2] M. Livingston, Q. F. Stout, Perfect dominating sets, Congr. Numer.,
78 (1990) 187-203.

[3] A. de Luca, On the combinatorics of finite words, Theor. Comput. Sci.,
218 (1999) 13–39.

6


