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Linear Inequalities, Duality Theorems and their

Financial Applications

András PRÉKOPA?

RUTCOR, Rutgers Center for Operations Research
640 Bartholomew Road, Piscataway, NJ 08854-8003
and
Department of Operations Research
L. Eötvös University, Budapest, Hungary

Abstract. The purpose of this paper is to commemorate the eminent Hungarian mathe-
matician and physicist, Gyula Farkas (1847–1930) on the occasion of the 75th anniversary of
his death. First we quote from letters of Farkas to show how he contributed to the develop-
ment of the world famous Hungarian mathematical scholarship, not only by his own scientific
achievements, but also by his organizational activities. Next we show how linear inequality
theorems find one step application in financial theory and practice. Finally, we establish a du-
ality relationship in connection with multiobjective optimization and probabilistic constrained
stochastic programming.

AMS 2000 subject classifications: 90-03, 90B99, 90C99

Key words and phrases: Gyula Farkas, linear inequality, duality theory

1 About Farkas as a Human Being

It has been shown in a number of publications (see, e.g., Prékopa 1978, 1980,
Gábor, 1990, Martinás and Brodszky, 2002) that Farkas contributed fundamen-
tal results to both mathematics and physics. Less known are the facts, however,
that he was a human being with noble personal qualities and a very efficient
organizer. He was a somewhat reserved person but he thought highly of profes-
sional and human qualities and helped a lot those whom he considered worthy
of it. He did not seek cheap popularity and it was one of the reasons that he
was highly respected, inside and outside the university, which he was able to
use favorably in university administrative matters. His words had been decisive.
The picture that we can form of his character becomes more complete if we
quote from his obituary that appeared after his death in the newspaper of “Az
Est”: “His colleagues, who new him more closely, enthusiastically admired him,
his students adored him”.

He succeeded to secure employments as professors at the University of Kolozs-
vár, for Lajos Schlesinger in 1897, Lipót Fejér in 1905, Frigyes Riesz in 1911 and
Alfréd Haar in 1912, who later on became of paramount importance in the
development of the 20th century Hungarian mathematical school.

? email: prekopa@rutcor.rutgers.edu
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Below we quote from Farkas’ letters to Lipót Fejér.
After he succeeded to hire Fejér to the University of Kolozsvár, on July 9,

1905:

“I learn from your letter, dear doctor, that you are spending your time
in the family circle... ...please give my regards to your family members,
too. Who thinks fondly about our past and future cooperation,

Gyula Farkas”

On October 3, 1911, while he prepares the position for Riesz, at the University
of Kolozsvár:

“The Committee accepted my proposal.. concerning Frigyes Riesz”.

On November 4, 1911 he is already working on getting a position for Haar:

“I am no longer afraid of loosing Haar to abroad, once he comes home”.

2 Financial Applications of Linear Inequality Theorems

The Capital Asset Pricing Model (CAPM) establishes a regression relationship
between the rate of return Ri on an asset i, and the market return RM which
can be defined, e.g., by the use of the Dow Jones index. It is given by

Ri = ai + biRM + εi, i = 1, . . . ,m,

where εi, i = 1, . . . ,m are independent random variables with E(εi) = 0, i =
1, . . . ,m. In this equation the values Ri, RM are also random variables, RM is
independent of εi, i = 1, . . . ,m. The model was formulated by Treynor (1961)
and Sharpe (1963, 1964).

Arbitrage pricing theory (APT), formulated by Ross in 1976, is more general
than CAPM because it assumes that the rate of return on asset i is a linear
function of more than one factors. The basic equation used by APT is the
regression equation

Ri = ai + bi1X1 + . . .+ binXn + εi, (1)

where εi, i = 1, . . . ,m are independent random variables; Xi, i = 1, . . . ,m are
also random variables, independent of εi, i = 1, . . . ,m, E(εi) = E(Xi) = 0,
i = 1, . . . ,m, and ai, bi1, . . . , bin, i = 1, . . . ,m are constants.

We would like to check, if it is possible to create a portfolio out of the
assets i = 1, . . . ,m in such a way that we buy or sell an amount |wi| of asset
i = 1, . . . ,m and

m∑

i=1

wi ≤ 0,

m∑

i=1

Riwi > 0. (2)
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If such w1, . . . , wm numbers exist, then arbitrage exists because without any
positive investment we obtain positive return. The possibility of arbitrage is

excluded if for any wi, i = 1, . . . ,m for which we have (approximately)
m∑

i=1
wiεi =

0, the following condition holds: the relations
m∑

i=1

wi ≤ 0

m∑

i=1

wibij = 0, j = 1, . . . , n (3)

imply that
m∑

i=1

wiai ≤ 0. (4)

Note that ai = E(Ri), i = 1, . . . ,m.
By Farkas’ theorem (1901) the above relationship guarantees the existence

of real numbers λ0 ≥ 0, λ1, . . . , λm such that

E(Ri) = λ0 + λ1bi1 + . . .+ λnbin, i = 1, . . . ,m. (5)

The number λ0 belongs to the first relation in (3), and can be identified as the
risk free return Rf . The λ1, . . . , λn are pricing the sensitivity coefficients in (1).
They are also called risk premiums. Note that the inference from (3) and (4) to
(5) is mathematically exact but before we came to that we had assumed that
the multipliers w1, . . . , wm eliminate the randomness from the portfolio, i.e.,
m∑

i=1
wiεi = 0.

What is today called the main arbitrage pricing theorem is formulated in a
different way. We look at m securities, numbered by 1, . . . ,m, and assume that
the world can be in n different states. Security i produces a payoff bij if the
state of the world is j. We form the payoff matrix

B =




b11 b12 · · · b1n

b21 b22 · · · b2n
...

...
...

bm1 bm2 · · · bmn


 .

We also assume that, in addition to the matrix B, we are given the security
prices which are the components of the vector q ∈ Rm.

A portfolio is a vector θ ∈ Rm with real components. Its market value is
qT θ. We say that θ is an arbitrage portfolio, or simply arbitrage, if at least one
of the following two conditions is satisfied

C1 : qT θ ≤ 0 and BT θ ≥ 0, BT θ 6= 0

C2 : qT θ < 0 and BT θ ≥ 0.



Linear Inequalities, Duality Theorems and Applications 11

If none of C1, C2 holds, then we say that there is no arbitrage. In other terms,
if C1 ∨ C2 holds then there is arbitrage and if C1 ∨ C2 = C̄1 ∧ C̄2 holds, then
there is no arbitrage.

The matrix BT has size n×m. The set of vectors

Q =

{(
BT

−q

)
y

∣∣∣∣ y ∈ Rm

}

is a finitely generated cone, i.e., a convex polyhedral cone. The no arbitrage
condition can be stated as: the only intersection of Q and the nonnegative
orthant {x |x ∈ Rn+1, x ≥ 0} is the zero vector.

A vector x = (x1, . . . , xn) is called a state-price vector if xi > 0, i = 1, . . . , n
and Bx = q. The following theorem holds true [3].

Theorem 1 There is no arbitrage if and only if there exists a state-price vector.

The proof can be based on the following

Theorem 2 (Stiemke 1915) There exists x with all positive components sat-
isfying Ax = 0, if and only if

AT y ≥ 0 implies AT y = 0.

Proof of the arbitrage theorem. We rem that there exists an x with all
positive components satisfying Bx = q (a state-price vector) if and only if there
exists a vector (x1, . . . , xn+1) with all positive components such that

(B,−q)




x1
...

xn+1


 = 0.

Stiemke’s theorem tells us that it happens if and only if
(
BT

−qT

)
y ≥ 0 implies

(
BT

−qT

)
y = 0.

This is, however, the necessary and sufficient condition for the no arbitrage, as
we have noted above. �

Remark 1 A state-price vector exists if and only if the following LP has posi-
tive optimum value:

max v

subject to

Bx = q

v − xi ≤ 0, i = 1, . . . , n

v ≥ 0.
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The following is a probabilistic type arbitrage theorem in which the matrix B
has an interpretation different from what we gave to it in the preceding theorem.

Suppose there arem wagers and n possible outcomes of a random experiment
(game). If the amount xi is bet on wager i and the outcome of the experiment
is the jth one, then the return is

xibij , i = 1, . . . ,m; j = 1, . . . , n,

where xi can be positive, negative or zero. The total return is, for a fixed j,

m∑

i=1

xibij, j = 1, . . . , n.

If the vector p = (p1, . . . , pn) has the property that

n∑

j=1

pj = 1, pj ≥ 0, j = 1, . . . , n

then we call it a probability vector.
Let p1, . . . , pn be the probabilities of the outcomes of the experiment. Then

n∑

j=1

bijpj, i = 1, . . . ,m

is the expected return of a unit bet on wager i.
The following holds true [15].

Theorem 3 Exactly one of the following two assertions is true.

(1) There exists an x = (x1, . . . , xm)T such that

m∑

i=1

xibij > 0, j = 1, . . . , n.

(2) There exists a probability vector p such that

n∑

i=1

bijpj = 0, i = 1, . . . ,m.

In other words: either there exits a betting scheme x = (x1, . . . , xm)T that
leads to a sure win, or there exists a probability vector p such that the expected
return on each wager is zero.
Proof. The proof is an immediate consequence of the following

Theorem 4 (Gordan, 1873) There exists a vector x ≥ 0, x 6= 0 satisfying
Ax = 0 if and only if there is no y such that all components of AT y are positive.
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To determine that in a special situation (1) or (2) holds, we look at the
linear programming problem

max v
subject to
m∑

i=1
xibij ≥ v

−1 ≤ xi ≤ 1, i = 1, . . . ,m.

If the optimum value is positive, then case (1) holds and simultaneously we
obtain optimal (positive, negative or zero) betting proportions.

For more details about arbitrage pricing theory see Duffie (1996).

3 On the Duality Theorem of Linear Programming

The optimization literature attributes to the first exact proof of the duality
theorem of linear programming to Gale, Kuhn and Tucker (1951). There are,
however, important antecedants of the theorem, one of them is the theorem of
Farkas on linear inequalities. In this short note, however, we pay attention to
von Neumann’s role in the development of the theorem.

George Dantzig, who passed away in 2005 and was one of the principal
architects of linear programming, visited von Neumann in 1947, at the Institute
for Advanced Study in Princeton. Von Neumann’s book with Morgenstern on
game theory was published not long before, so it was quite a good idea from
Dantzig to have a discussion with Neumann about the relationship between
linear programming and game theory. Dantzig had already grasped the primal-
dual relationship of linear programming problems, by analyzing the numerical
solutions of LP problems but he had no proof of the duality theorem.

Following the meeting with Dantzig, von Neumann wrote a short note en-
titled “Discussion of a Maximum Principle” and dated November 15–16, 1947.
It was circulated in the Institute of Advanced Study in Princeton. The paper
was not intended for publication but it is included in the Collected Works of
Neumann (Vol. VI., 89–95) with footnotes by H.W. Kuhn and A.W. Tucker.
In that paper Neumann gives a proof for the duality theorem. At a point he
invokes the fundamental theorem on linear inequalities. Now, the question is:
what theorem he had in mind? If it is Farkas’ theorem, then there is a slight
gap in the proof, as mentioned by Kuhn and Tucker. If, however, it is the theo-
rem of Haar, that had been proved in 1918, then Neumann’s proof is complete.
The difference between Farkas’ theorem and Haar’s theorem is minor. Haar’s
theorem states similar assertion for non-homogeneous linear inequalities and it
can be obtained from Farkas’ theorem by a simple homogenization technique.
Can we assume that von Neumann’s genius at once observed how one can come
to the theorem for the non-homogeneous case, without being informed about
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the existence of Haar’s result? The answer would be pure speculation but one is
inclined to say yes. Anyway, the fact is that Neumann played an important role
in the development of the duality theorem of linear programming. That theo-
rem, on the other hand, can be used to give a very simple proof for Neumann’s
minimax theorem for two-person zero-sum games.

For later use in this paper we present the primal-dual pair of linear program-
ming problems in its most general form:
Primal problem:

max {cT1 x1 + cT2 x2}

subject to

A11x1 +A12x2 ≤ b1

A21x1 +A22x2 = b2

x1 ≥ 0.

Dual problem:

min {bT1 y1 + bT2 y2}

subject to

AT
11y1 +AT

21y2 ≥ c1

AT
12y1 +AT

22y2 = c2

y1 ≥ 0.

The duality theorem states that if one of the two problems has feasible solution
and finite optimum, then so does the other one and the optimum values are
equal.

4 Programming under Probabilistic Constraint

When we formulate a stochastic programming problem, then in the first step we
formulate a deterministic problem that would be our optimization problem if we
did not have randomness in it. That problem is called underlying deterministic
problem or base problem. After we have identified the random variables in the
problem, we observe that it loses its original meaning. Then we reformulate
it, by the use of some decision principle. The resulting problem is a stochastic
programming problem. Consider the following

Base problem:
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min cTx

subject to

Ax ≥ b (6)

Tx ≥ ξ

x ≥ 0,

where A is an m×n, T is an r×n matrix, x, c, b, ξ are vectors of suitable sizes,
ξ is a random variable. The decision variable is x.

Based on this we formulate the

Stochastic programming problem:

min cTx

subject to

Ax≥ b

P (Tx≥ ξ) ≥ p

x≥ 0,

(7)

where p (0 < p < 1) is a prescribed probability. We call (7) probabilistic con-
strained problem.

Suppose that ξ has a finite support S and let F be the c.d.f. of ξ.

Definition The point s ∈ S is a p-level efficient (or briefly a p-efficient) point
of S if F (s) ≥ p and there is no y ∈ S such that y ≤ s, y 6= s, F (y) ≥ p.

Let {s1, . . . , sN} be the set of p-efficient points. Then problem (7) is equiv-
alent to the following:

min cTx

subject to

Ax≥ b

Tx∈
N⋃

i=1

(si +Rr
+)

x≥ 0.

(8)
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Problem (8) is a disjunctive programming problem. A relaxation of it (see,
Prékopa, Vizvári, Badics, 1998) is:

min cTx

subject to

Ax ≥ b

Tx−
N∑

i=1

λisi ≥ 0

N∑

i=1

λi = 1

x ≥ 0, λ ≥ 0.

(9)

The dual of this problem is:

max{v + bTu}

subject to

v − sT
i z≤ 0, i = 1, . . . , N

ATu+ T T z≤ c

u ≥ 0, z≥ 0.

(10)

The decision variables are u, z and v.
An equivalent form of problem (10) is the following:

max

{
min

1≤i≤N
sT
i z + bTu

}

subject to

ATu+ T T z≤ c

u ≥ 0, z≥ 0,

(11)

where the variable v does not appear.
The s1, . . . , sN p-efficient points that appear in the probabilistic constraint

in problem (8), produce a multi-objective optimization problem (11), as its dual.
What we have obtained is that the dual of the relaxation of the probabilis-

tic constrained problem (8) is a multi-objective optimization problem. Now we
mention the following

Theorem 5 (Prékopa, Vizvári, Badics, 1998) If {s1, . . . , sN} is an an-
tichain, i.e., none of them dominates any other one in the set, then for every
0 < p < 1 there exists a c.d.f. such that {s1, . . . , sN} is the set of its p-efficient
points.

Now, let us start from problem (11), where we assume that the set {s1, . . . , sN}
is an antichain. If we reformulate it in the form of problem (10) and take the
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dual of the latter, then we come to problem (9) that is a relaxation of the prob-
abilistic constrained problem (8), written up (based on the above theorem) with
{c1, . . . , cN} as the set of p-efficient points of the probability distribution of a
random vector ξ.

Thus, not the original probabilistic constrained problem but its relaxation
is in a primal-dual relationship with a multi-objective optimization problem.

5 A General, Multi-Objective, Probabilistic Constrained
Model and a Ruality Relationship

Consider the following optimization problem:

min
{

max
1≤i≤M

cTi x+ qT y

}

subject to

Ax+B y≥ b

P (T x+Wy≥ ξ) ≥ p0

x ≥ 0, y ≥ 0,

(12)

where the decision variables are x and y. In the above problem we have simul-
taneously multiple objective function and probabilistic constraint.

Suppose that ξ is discrete and the set of its p0-efficient points is {s1, . . . , sN}.
The following problem is equivalent to (12):

min
{

max
1≤i≤M

cTi x+ qT y

}

subject to

Ax+ By≥ b

Tx+Wy∈
N⋃

i=1

(si +Rr
+)

x ≥ 0, y ≥ 0.

(13)

A relaxation of this problem is:

min
{

max
1≤i≤M

cTi x+ qT y

}

subject to

Ax+ By ≥ b

Tx+Wy−
N∑

i=1

λisi ≥ 0

N∑

i=1

λi = 1

x ≥ 0, y ≥ 0, λ ≥ 0.

(14)
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Introducing the variable t, (14) can be written in the equivalent form:

min{t+ qT y}

subject to

t− cTi x ≥ 0, i = 1, . . . ,M

Ax+ By ≥ b

Tx+Wy−
N∑

i=1

λisi ≥ 0

x ≥ 0, y ≥ 0, λ ≥ 0.

(15)

The dual of the last problem is:

max{v + bTu}

subject to

v− sT
i z ≤ 0, i = 1, . . . , N

BTu+W T z ≤ q

ATu+ T T z−
M∑

i=1

µici ≤ 0

M∑

i=1

µi = 1

u ≥ 0, z ≥ 0, µ ≥ 0.

(16)

We assume that the set {c1, . . . , cM} is an antichain. It follows that {−c1, . . . ,−cM}
is also an antichain. It follows from the proof of the Theorem of the former sec-
tion (see Prékopa, Vizvári, Badics 1998) that if we supplement to it a suitable
vector d, the obtained M + 1 points −c1, . . . ,−cM , d may be regarded as the
support of a random vector η whose p1-efficient points are −c1, . . . ,−cM , where
p1 is an arbitrarily chosen probability, 0 < p1 < 1. If we use this, then we can
write (16) in the following equivalent form:

max

{
min

1≤i≤N
sT
i z + bTu

}

subject to

W T z+BTu≤ q

P (−T T z−ATu≥ η) ≥ p1

z ≥ 0, u ≥ 0.

(17)

Thus, the dual of the convexified problem (16) is of the same type as the
original problem (12). In this sense we consider problem (12) and (17) a pair
of primal-dual probabilistic constrained multi-objective stochastic programming
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problems. Below we present side by side the pair of primal-dual problems which
are the following

min
{

max
1≤i≤M

cTi x+ qT y

}

subject to

Ax+B y≥ b

P (T x+Wy≥ ξ) ≥ p0

x ≥ 0, y ≥ 0.

(18)

and

max

{
min

1≤i≤N
sT
i z + bTu

}

subject to

W T z+BTu≤ q

P (−T T z−ATu≥ η) ≥ p1

z ≥ 0, u ≥ 0.

(19)

For the numerical solutions of the problems (15) and (16) we refer to the
papers [2], [12], [13], [14] and [16].

If A, B, W , b, q are 0 matrices and vectors, respectively, then the pair of
primal-dual problems is:

min

(
max

1≤i≤M
cTi x

)

subject to

P (Tx≥ ξ) ≥ p0

x≥ 0

(20)

max

(
min

1≤i≤N
sT
i z

)

subject to

P1(−T
T z≥ η) ≥ p1

z≥ 0.

(21)

These are discrete variants of Komáromi’s primal-dual problems (see Komáromi,
1986).

6 The Case of Continuous Distributions

Let ξ, η be two random vectors with strictly quasi-concave c.d.f.’s F and G,
respectively. For any 0 < p0, p1 < 1 the sets

S = {w | F (w) ≥ p0}

C = {w | G(w) ≥ p1}
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are convex, compact and

S̃ = {w | F (w) = p0}

C̃ = {w | G(w) = p1}

are their boundary sets, respectively. Then, if we take sequences of discrete
subsets of S̃, C̃ that are dense in these sets, respectively, then we obtain a pair
of problems that are equivalent to problems (18) and (19), respectively.

The problem equivalent to (18) is:

min

{
max
c∈C̃

cTx+ qT y

}

subject to

Ax+B y≥ b

Tx+Wy∈
⋃

s∈S̃

(s+Rr
+)

x ≥ 0, y ≥ 0

(22)

and the problem equivalent to (19) is:

max

{
min
s∈S̃

sT z + bTu

}

subject to

W T z+BT u≤ q

−T T z−AT u∈
⋃

c∈C̃

(−c+Rn
+)

z ≥ 0, u ≥ 0.

(23)

For the resulting problems (18), (19) (or (22), (23)) we can state a duality
theorem of which Komáromi’s theorem is a special case.

One financial application of the above multi-objective probabilistic con-
strained model is the following. Suppose we formulate a cash matching problem,
where part of the liabilities are covered by cash flows arising from bonds and
other sources, e.g., real estates. The prices of the bonds are known but the real
estate building costs may not be known. Suppose that the latters are not ran-
dom variables, but simply unknown. Then it is reasonable to formulate problem
(12). Discretizing, we can solve the primal or the dual problem whichever is
more convenient.
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1 Introduction

Since during the last decades the problems generated by the practical needs
turned out to be more and more complex, one of the main problems in op-
timization is to find some methods and conditions which assure the existence
of optimal solution for more and more general problems which encompass as
special cases the already studied ones.

The problem treated within this paper consists in minimizing the sum of a
convex function and the composition of a convex and K-increasing function with
a K-convex one when the variable varies on a given set (K is a closed convex
cone). Many optimization problems already treated can be derived as special
cases of this general optimization problem; among these special cases we would
like to mention only the usual problem of minimizing a convex function regarding
geometrical and convex inequality constraints. Because of its generality, the
problem had recently drawn the attention of many mathematicians and some
new results are to be found in the literature ([1], [8], [10]).

In order to provide duality assertions for the problem we treat, we use the
same approach as in [2] and [3]. Thus, using an auxiliary variable, to the primal
? email: radu.bot@mathematik.tu-chemnitz.de
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problem we associate an equivalent one, but whose dual can be easier estab-
lished. In order to determine its dual, to the new optimization problem the
classical Lagrange dual problem is attached. Moreover, as the inner infimum of
the Lagrange problem can be considered itself as an optimization problem, its
Fenchel dual problem is also determined. The construction of the dual, which is
actually what we call the Fenchel-Lagrange dual problem, is in detail described
and a constraint qualification which ensures strong duality between the primal
problem and its dual is also given. Regarding the Fenchel-Lagrange dual prob-
lem, let us mention that more about this type of dual problem can be found in
[4], [5], [6], [7], [13].

In [6] and [7] Boţ and Wanka have presented some Farkas-type results for
inequality systems involving finitely many convex functions using an approach
based on the theory of conjugate duality for convex optimization problems.
Within the present paper, using weak and strong duality assertions developed
for the problem we treat, these results are extended to a more general one.
Moreover, it is shown that some results in the literature arise as special cases of
the problem we treat.

The paper is organized as follows. Within the second section some definitions
and results needed later are presented. A dual for the optimization problem with
composed convex functions and the weak and strong duality assertions are es-
tablished in the third section. Section 4 contains the main result of the paper.
The duality acquired in Section 3 allows us to give a Farkas-type theorem. The
last section contains Farkas-type results for some particular instances of the ini-
tial one and some recent results are rediscovered as special cases.

2 Notations and preliminaries

For the sake of the completeness some well-known definitions and results are
presented in the following. As usual, by R

k is denoted the k-dimensional real
space for any nonnegative integer k. All vectors are considered as column vectors.
Any column vector can be transposed to a row vector by an upper index T .
By xT y =

∑k
i=1 xiyi is denoted the usual inner product of two vectors x =

(x1, ..., xk)T and y = (y1, ..., yk)T in R
k. Considering an arbitrary non-empty

closed convex cone K ⊆ R
k, the partial ordering induced by the cone is defined

by
x 5K y ⇔ y − x ∈ K, ∀x, y ∈ R

k.

Let R
k to be extended by an element ∞ such that for all x ∈ R

k it holds
x 5K ∞. Regarding the partial ordering induced by the cone K over the set
R

k, it is not hard to see that it can be naturally extended to the set R
k ∪ {∞}

by taking
x ≤K ∞, ∀x ∈ R

k ∪ {∞}.
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Moreover, the addition and the multiplication with a scalar are also natural
extended setting

∞ + x = x+ ∞ = ∞ and t∞ = ∞,

for any x ∈ R
k ∪ {∞} and t ≥ 0.

To the cone K we can associate its dual cone defined by

K∗ =
{
β ∈ R

k : βTx ≥ 0,∀x ∈ K
}
.

As any β ∈ K∗ is actually a real-valued linear functional β : R
k → R, we

consider its natural extension

β : R
k ∪ {∞} → R = R ∪ {±∞}, β(x) =

{
βTx, x ∈ R

k,
+∞, x = ∞.

Let us consider an arbitrary set X ⊆ R
n. By ri(X), co(X) and cl(X) are

denoted the relative interior, the convex hull and the closure of the setX, respec-
tively. Furthermore, the cone and the convex cone generated by the set X are
denoted by cone(X) =

⋃
λ≥0 λX and, respectively, coneco(X) =

⋃
λ≥0 λ co(X).

By v(P ) we denote the optimal objective value of an optimization problem (P ).

If X ⊆ R
n is given, we consider the following two functions, the indicator

function

δX : R
n → R, δX(x) =

{
0, x ∈ X,
+∞, otherwise,

and the support function

σX : R
n → R, σX(u) = sup

x∈X
uTx,

respectively.
For a given function f : R

n → R, we denote by dom(f) =
{
x ∈ R

n : f(x) <
+∞

}
its effective domain, by epi(f) =

{
(x, r) : x ∈ R

n, r ∈ R, f(x) ≤ r
}

its
epigraph, respectively. The function f is called proper if its effective domain is
a nonempty set and f(x) > −∞ for all x ∈ R

n.
We consider also the linear operator

T : R
n × R → R × R

n, T
(
x, r

)
= (r, x).

When X is a nonempty subset of R
n we define for the function f the conju-

gate relative to the set X by

f∗X : R
n → R, f∗X(p) = sup

x∈X

{
pTx− f(x)

}
.
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It is easy to observe that for X = R
n the conjugate relative to the set X

is actually the (Fenchel-Moreau) conjugate function of f denoted by f ∗. Even
more, it is trivial to prove that

f∗X = (f + δX)∗ and δ∗X = σX .

Definition 2.1 The function g : R
k → R is called K-increasing if for all x

and y in R
k such that x 5K y it holds g(x) ≤ g(y).

Definition 2.2 Let the function h : R
n → R

k ∪{∞} be given. The function
is called K-convex if for all x, y ∈ R

n and for all t ∈ [0, 1] one has

h
(
tx+ (1 − t)y

)
5K th(x) + (1 − t)h(y).

Definition 2.3 Given the functions f1, ..., fm : R
n → R, we call their infimal

convolution the function

f1�...�fm : R
n → R, (f1�...�fm)(x) = inf

{ m∑

i=1

fi(xi) : x =

m∑

i=1

xi

}
.

The following statements close this preliminary section.

Theorem 2.1 (cf. [12]) Let f1, ..., fm : R
n → R be proper convex functions.

If the set
⋂m

i=1 ri(dom(fi)) is nonempty, then

( m∑

i=1

fi

)∗

(p) = (f ∗1 �...�f ∗m)(p) = inf

{ m∑

i=1

f∗i (pi) : p =

m∑

i=1

pi

}
,

and for each p ∈ R
n the infimum is attained.

Corollary 2.2 (cf. [3]) Let f1, ..., fm : R
n → R be proper convex functions.

If the set
⋂m

i=1 ri(dom(fi)) is nonempty, then

epi

(( m∑

i=1

fi

)∗)
=

m∑

i=1

epi(f∗i ).

Proposition 2.3 (cf. [3]) Let f : R
k → R be a proper function and α > 0

a real number. One has

epi
(
(αf)∗

)
= α epi

(
f∗

)
.



26 Radu Ioan Boţ, Ioan Bogdan Hodrea, Gert Wanka

3 Duality for the general problem

Let X ⊆ R
n be a nonempty convex set and K ⊆ R

k a nonempty closed convex
cone. Consider the functions f : R

n → R, g : R
k → R and h : R

n → R
k ∪ {∞},

h =
(
h1, ..., hk

)T , such that f is proper and convex, g is proper, convex and K-
increasing and h is K-convex. The function g is extended to the space R

k∪{∞}
by defining g(∞) = +∞. Moreover, throughout this section two conditions are
imposed. First of all, we assume that

X ∩ dom(f) ∩ h−1
(
dom(g)

)
6= ∅, (1)

where h−1
(
dom(g)

)
= {x ∈ R

n : h(x) ∈ dom(g)}. The second condition we
consider is

ri
(
X ∩ h−1(Rk)

)
∩ ri

(
dom(f)

)
6= ∅. (2)

As a remark, let us mention that these conditions are independent, although
at a first look we are tempted to believe that, if the second relation is fulfilled,
then the first relation is fulfilled, too.

The problem we work with is

(P ) inf
x∈X

(
f(x) + (g ◦ h)(x)

)
.

Regarding this problem, since the relation (1) is fulfilled, it is trivial to see
that that the optimal objective value of the problem (P ) fulfills v(P ) < +∞.
Even more, as the function g ◦ h is convex, the problem we treat is actually a
convex optimization problem with geometric constraints. In order to give a dual
problem for (P ) we consider the following convex optimization problem

(P ′) inf
x∈X,y∈dom(g),

h(x)−y5K0

(
f(x) + g(y)

)
.

The connection between (P ) and (P ′) is made by the following result.

Theorem 3.1 For the optimal objective values of (P ) and (P ′) we have
v(P ) = v(P ′).

Proof. Consider an arbitrary x ∈ X.
If x /∈ dom(f) ∩ h−1

(
dom(g)

)
, either f(x) = +∞ or (g ◦ h)(x) = +∞ or

both, so that f(x) + (g ◦ h)(x) = +∞ ≥ v(P ′).
If x ∈ dom(f) ∩ h−1

(
dom(g)

)
, take y = h(x) ∈ dom(g). Then y − h(x) =

0 ∈ K and the pair (x, y) is obviously feasible to (P ′). Even more, as f(x)+(g ◦
h)(x) = f(x)+ g(y), this equality is enough to secure f(x)+ (g ◦h)(x) ≥ v(P ′).
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Taking into consideration the inequalities obtained in the two cases consid-
ered above, the inequality

v(P ) ≥ v(P ′)

arises as a simple consequence.

In order to prove the reverse inequality, let us consider an arbitrary pair
(x, y) feasible to (P ′).

Let us assume first that h(x) = ∞. This would mean that y must be also
equal to ∞ and thus g(y) = +∞. But this contradicts the assumption y ∈
dom(g) and therefore h(x) ∈ R

k.
As h(x) 5K y we have that g(h(x)) ≤ g(y), so the inequality f(x) +

g(h(x)) ≤ f(x) + g(y) is also fulfilled. Even more, we get v(P ) ≤ f(x) + g(y)
and, since this inequality is true for an arbitrary pair (x, y) feasible to (P ′), the
inequality

v(P ) ≤ v(P ′)

follows at hand. This completes the proof. 2

This result allows us to affirm that any dual problem of (P ′) is automatically
a dual problem of (P ).

To (P ′) we associate its Lagrange dual problem with β ∈ K ∗ as dual variable

(D) sup
β∈K∗

inf
x∈X,

y∈dom(g)

{
f(x) + g(y) + βT

(
h(x) − y

)}
.

Using the definition of the conjugate relative to a set, the inner infimum
becomes

inf
x∈X,

y∈dom(g)

{
f(x) + g(y) + βT

(
h(x) − y

)}

= inf
x∈X

{
f(x) + βTh(x)

}
+ inf

y∈dom(g)

{
g(y) − βT y

}

= − sup
x∈X

{
− f(x) − βTh(x)

}
− sup

y∈dom(g)

{
βT y − g(y)

}

= −
(
f + βTh

)∗
X

(0) − g∗(β)

= −g∗(β) − inf
p∈Rn

{
f∗(p) +

(
βTh

)∗
X

(−p)
}
,

and, as relation (2) is accomplished, Theorem 2.1 yields that the last infimum
is attained.
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Remark. Since β(∞) = +∞ for all β ∈ K∗, whenever h(x) = ∞ we get
(βTh)(x) = ∞, for all β ∈ K∗, and it is not hard to see that with this condition
satisfied we get

dom
(
βTh+ δX

)
= X ∩ h−1(Rk), ∀β ∈ K∗.

Thus we obtain the following formula for the dual problem to (P ′) and also
(P )

(D) sup
p∈R

n,
β∈K∗

{
− g∗(β) − f∗(p) −

(
βTh

)∗
X

(−p)

}
.

As a direct consequence of our construction of (D) we get the following weak
duality result.

Theorem 3.2 Between the primal problem (P ) and the dual (D) weak du-
ality is always satisfied, i.e. v(P ) ≥ v(D).

The existent literature contains some examples which prove that strong du-
ality is not always fulfilled (see, for example, [13]). Nevertheless, such a situation
can be avoided if we consider the following constraint qualification

(CQ) ∃x′ ∈ ri
(
X ∩ h−1(Rk)

)
∩ ri

(
dom(f)

)
: h(x′) ∈ ri

(
dom(g)

)
− ri(K).

Theorem 3.3 Assume that v(P ) is finite. If (CQ) is fulfilled, then between
(P ) and (D) strong duality holds, i.e. v(P ) = v(D) and the dual problem has
an optimal solution.

Proof. We actually prove that strong duality holds between the problems (P ′)
and (D). Using Theorem 3.1 the desired result arises as a direct consequence.

To the problem (P ′) we associate its Lagrange dual

(D) sup
β∈K∗

inf
x∈X,

y∈dom(g)

{
f(x) + g(y) + βT

(
h(x) − y

)}
.

As the condition (CQ) is fulfilled and all the involved functions are convex,
is is well-known from the existing literature ([1], [12]) that between (P ′) and
(D′) strong duality holds, i.e. v(P ′) = v(D′) and there exists a β ∈ K∗ such
that

v(P ′) = inf
x∈X,

y∈dom(g)

{
f(x) + g(y) + β

T (
h(x) − y

)}
.

As (CQ) is fulfilled we get using the above calculation

inf
x∈X,

y∈dom(g)

{
f(x)+ g(y)+β

T (
h(x)−y

)}
= −g∗(β)− inf

p∈Rn

{
f∗(p)+

(
β

T
h
)∗
X

(−p)

}
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and the infimum in the right-hand side is attained. Therefore there exist p ∈ R
n

and β ∈ K∗ such that

v(P ′) = −g∗(β) − f∗(p) −
(
β

T
h
)∗
X

(−p).

Using Theorem 3.1 we obtain v(P ) = v(D) and (p, β) is an optimal solution for
(D). 2

4 Farkas-type results via weak and strong duality

Using the results presented within the previous section, the following Farkas-
type result can be easily proved.

Theorem 4.1 Suppose that (CQ) holds. Then the following assertions are
equivalent:

(i) x ∈ X ⇒ f(x) + (g ◦ h)(x) ≥ 0;
(ii) there exist p ∈ R

n and β ∈ K∗ such that

g∗(β) + f∗(p) +
(
βTh

)∗
X

(−p) ≤ 0. (3)

Proof. ”(i) ⇒ (ii)” The statement (i) implies v(P ) ≥ 0 and, since the as-
sumptions of Theorem 3.3 are fulfilled, strong duality holds, i.e. v(D) = v(P ) ≥
0 and the dual (D) has an optimal solution. Thus there exist p ∈ R

n and β ∈ K∗

fulfilling (3).

”(ii) ⇒ (i)” As we can find some p ∈ R
n and β ∈ K∗ fulfilling (3), it follows

right away that

v(D) ≥ −g∗(β) − f∗(p) −
(
βTh

)∗
X

(−p) ≥ 0.

Weak duality between (P ) and (D) always holds and thus we obtain v(P ) ≥
0, i.e. (i) is true. 2

The previous statement can be reformulated as a theorem of the alternative.

Corollary 4.2 Assume that the hypothesis of Theorem 4.1 is fulfilled. Then
either the inequality system

(I) x ∈ X, f(x) + (g ◦ h)(x) < 0

has a solution or the system
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(II) g∗(β) + f∗(p) +
(
βTh

)∗
X

(−p) ≤ 0,

p ∈ R
n, β ∈ K∗

has a solution, but never both.

Theorem 4.3 The statement (ii) in Theorem 4.1 is equivalent to

(0, 0, 0) ∈ {0}×T
(
epi(g∗)

)
+ epi(f ∗) × {0} +

⋃

β∈K∗

(
epi

(
(βTh)∗X

)
× {−β}

)
.

Proof. ”⇒” Since the statement (ii) holds, there exist p ∈ R
n and β ∈ K∗

such that
g∗(β) + f∗(p) +

(
βTh

)∗
X

(−p) ≤ 0.

As g∗(β) and (βTh)∗X(−p) have both finite real values, by definition follows

(
β, g∗(β)

)
∈ epi(g∗)

and (
− p, (βTh)∗X(−p)

)
∈ epi

(
(βTh)∗X

)
.

Thus (
− p, (βTh)∗X(−p),−β

)
∈ epi

(
(βTh)∗X

)
× {−β}

and it follows

(
− p,

(
βTh

)∗
(−p),−β

)
∈

⋃

β∈K∗

(
epi

(
(βTh)∗X

)
× {−β}

)
. (4)

Taking into consideration the definition of the operator T introduced in the
first section of the paper, the relation

(
0, g∗(β), β

)
∈ {0} × T (epi(g∗)) (5)

follows at once.

On the other hand the inequality

f∗(p) ≤ −g∗(β) −
(
βTh

)∗
(−p)

is also fulfilled, and, as the value in the right-hand side is finite, it holds

(
p,−g∗(β) −

(
βTh

)∗
X

(−p)
)
∈ epi

(
f∗

)
.

This implies

(
p,−g∗(β) −

(
βTh

)∗
X

(−p), 0
)
∈ epi

(
f∗

)
× {0}. (6)
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Combining relations (4), (5) and (6) we get

(0,0,0) =
(
0,g∗(β),β

)
+

(
p,−g∗(β)−

(
βTh

)∗
X

(−p),0
)

+
(
− p,

(
βTh

)∗
X

(−p),−β
)

∈ {0} × T
(
epi(g∗)

)
+ epi(f ∗) × {0} +

⋃

β∈K∗

(
epi

(
(βTh)∗X

)
× {−β}

)
.

”⇐” Since

(0, 0, 0) ∈ {0}×T
(
epi(g∗)

)
+ epi(f ∗) × {0} +

⋃

β∈K∗

(
epi

(
(βTh)∗X

)
× {−β}

)
,

we can find some p ∈ R
n and r ∈ R such that

(p, r, 0) ∈ epi(f ∗) × {0} (7)

and
(−p,−r, 0) ∈ {0} × T (epi(g∗)) +

⋃

β∈K∗

epi
(
(βTh)∗X

)
× {−β}. (8)

Using the definition of the epigraph of a function, from relation (7) we ac-
quire directly

f∗(p) ≤ r. (9)

By relation (8), there exists a β ∈ K∗ such that

(−p,−r, 0) ∈ {0} × T (epi(g∗)) + epi
(
(βTh)∗X

)
× {−β}.

The definition of the operator T and the previous relation imply that there exist
two real numbers r1 and r2 such that −r = r1 + r2, while the pairs (β, r1) and
(−p, r2) are in epi(g∗) and epi

(
(βTh)∗X

)
, respectively. Thus

g∗(β) + (βTh)∗X(−p) ≤ r1 + r2 = −r. (10)

Combining relations (9) and (10), the desired result is straightforward. 2

5 The ordinary problem as a particular case

Let X ⊆ R
n be a nonempty convex set and K ⊆ R

k a nonempty closed
convex cone. Consider the functions f : R

n → R and h : R
n → R

k ∪ {∞},
h =

(
h1, ..., hk

)T , such that f is proper and convex and h is K-convex.

Take the problem
(P1) inf

x∈X,
h(x)≤K0

f(x)
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and assume that
X ∩ dom(f) ∩ h−1(−K) 6= ∅.

It is not hard to remark that for all x ∈ R
n we have

h(x) ≤K 0 ⇔ δ−K

(
h(x)

)
= 0 ⇔ (δ−K ◦ h)(x) = 0.

Thus we get
v(P1) = inf

x∈X

(
f(x) + (δ−K ◦ h)(x)

)

and, so, (P1) can be further written as

(P1) inf
x∈X

(
f(x) + (δ−K ◦ h)(x)

)
.

Taking into consideration the results obtained in the previous section (to
prove that the function δ−K is K-increasing is trivial), to the problem (P1) we
can associate the following dual problem

(D1) sup
p∈R

n,
β∈K∗

{
− (δ−K)∗(β) − f∗(p) −

(
βTh

)∗
X

(−p)

}
.

Even more, it is easy to prove that

(δ−K)∗(β) =

{
0, β ∈ K∗,
+∞, otherwise,

so that the dual (D1) becomes

(D1) sup
p∈R

n,
β∈K∗

{
− f∗(p) −

(
βTh

)∗
X

(−p)

}
.

In order to get strong duality between the problems (P1) and (D1), the
fulfilling of the following constraint qualification is required

(CQ1) ∃x′ ∈ ri
(
X ∩ h−1(Rk)

)
∩ ri

(
dom(f)

)
: h(x′) ∈ ri

(
dom(δ−K)

)
− ri(K).

But

ri
(
dom(δ−K)

)
− ri(K) = ri(−K) − ri(K) = − ri(K) − ri(K) = − ri(K),

therefore we acquire

(CQ1) ∃x′ ∈ ri
(
X ∩ h−1(Rk)

)
∩ ri

(
dom(f)

)
: h(x′) ∈ − ri(K).

The following outcomes are easy consequences of the results proved within
the previous section.

Theorem 5.1 Suppose that (CQ1) holds. Then the following assertions are
equivalent:
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(i) x ∈ X, h(x) ≤K 0 ⇒ f(x) ≥ 0;
(ii) there exist p ∈ R

n and β ∈ K∗ such that

f∗(p) +
(
βTh

)∗
X

(−p) ≤ 0.

Corollary 5.2 Assume that the hypothesis of Theorem 5.1 is fulfilled. Then
either the inequality system

(I) x ∈ X,h(x) ≤K 0, f(x) < 0

has a solution or the system

(II) f∗(p) +
(
βTh

)∗
X

(−p) ≤ 0,

p ∈ R
n, β ∈ K∗

has a solution, but never both.

Theorem 5.3 The statement (ii) in Theorem 5.1 is equivalent to

(0, 0) ∈ epi(f ∗) +
⋃

β∈K∗

epi
(
(βTh)∗X

)
. (11)

Proof. By Theorem 4.3 we know that the statement (ii) in Theorem 5.1 is
equivalent to

(0,0,0)∈{0}×T
(
epi((δ−K)∗)

)
+epi(f ∗)×{0}+

⋃

β∈K∗

(
epi

(
(βTh)∗X

)
×{−β}

)
.

Since
epi

(
(δ−K)∗

)
= K∗ × [0,+∞),

it is easy to see that the last relation can be equivalently written as

(0, 0, 0) ∈
⋃

β∈K∗

(
{0}×[0,+∞)×K∗+epi(f ∗)×{0}+epi

(
(βTh)∗X

)
×{−β}

)
.

This means that there exists β ∈ K∗ such that

(0, 0) ∈ {0} × [0,+∞) + epi(f ∗) + epi
(
(βTh)∗X

)
. (12)

Using only the definition of the epigraph of a function it is easy to prove that

{0} × [0,+∞) + epi(f ∗) = epi(f ∗).

Therefore, by (12),

(0, 0) ∈ epi(f ∗) +
⋃

β∈K∗

epi
(
(βTh)∗X

)
,
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and the proof is complete. 2

Let us consider now h : R
n → R

k and K = R
k
+. The constraint qualification

(CQ1) becomes in this case

(CQ′
1) ∃x′ ∈ ri(X) ∩ ri

(
dom(f)

)
: h(x′) ∈ − ri

(
R

k
+

)
,

which is actually the Slater constraint qualification

(CQ′
1) ∃x′ ∈ ri(X) ∩ ri

(
dom(f)

)
: h(x′) < 0.

As ri(X) 6= ∅, the following equalities can be easily proved (cf. [3], [6])

⋃

β∈K∗

epi
(
(βTh)∗X

)
=

⋃

β=0

epi
(
(βTh)∗X

)
= coneco

( k⋃

i=1

epi(h∗i )

)
+ epi(σX).

Then the following results are easy consequences of Theorem 5.1 and Theo-
rem 5.3.

Theorem 5.4 Suppose that (CQ′
1) holds. Then the following assertions are

equivalent:

(i) x ∈ X, h(x) 5 0 ⇒ f(x) ≥ 0;
(ii) there exist p ∈ R

n and β = 0 such that

f∗(p) +
(
βTh

)∗
X

(−p) ≤ 0.

Theorem 5.5 The statement (ii) in Theorem 5.4 is equivalent with

(0, 0) ∈ epi(f ∗) + coneco

( k⋃

i=1

epi(h∗i )

)
+ epi(σX).

As a last remark, let us mention that the last two theorems were obtained
by Boţ and Wanka in [6], as a generalization of some results due to Jeyakumar
([9]).

6 Conclusions

Within the current paper we deal with conjugate duality and Farkas-type results
in composed convex programming. The approach we use is based on conjugate
duality for an optimization problem consisting in minimizing the sum between a
convex function and the precomposition of an K-increasing and convex function
with a K-convex vector function, where K is a closed convex cone. The result
we present generalizes some Farkas-type results presented by Boţ and Wanka
in [6] and by Jeyakumar in [9]. Moreover, the existing connections between the
Farkas-type results and the theorems of the alternative and, respectively, the
theory of duality are emphasized once more.
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Abstract. We give a Brézis–Haraux-type approximation of the range of the monotone oper-
ator TA = A∗

◦ T ◦A when A is a linear continuous mapping between two Banach spaces and
T is a maximal monotone operator. Then we specialize the result for a Brézis–Haraux-type
approximation of the range of the subdifferential of the precomposition to A of a proper con-
vex lower semicontinuous function defined on a Banach space, which is proven to hold under
a weak sufficient condition. This extends and corrects some older results due to Riahi and
Chbani that consist in the approximation of the range of the sum of the subdifferentials of
two proper convex lower semicontinuous functions.
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1 Introduction

Given two monotone operators, the sum of their ranges is usually larger than
the range of their sum, but there are some situations where these sets are al-
most equal, i.e. their interiors and closures coincide. Brézis and Haraux ([7], [8])
pioneered the research on this subject giving some conditions that assured the
mentioned result in Hilbert spaces. Since then the problem of finding conditions
under which the sum of the ranges of two monotone operators is almost equal
to the range of their sum is known as the Brézis–Haraux approximation prob-
lem and the original result has been extended in several directions. Reich ([19]),
Chu ([12], [13]) and Simons ([23]) treated the problem in reflexive Banach spaces
and Chbani and Riahi ([11]) and Riahi ([20]) in Banach spaces, while Pennanen
([17]), working in reflexive Banach spaces, extended the result from sums of
monotone operators to monotone composite mappings of the form A∗ ◦ T ◦ A
where A is a linear continuous mapping and T is a monotone operator.

The Brézis–Haraux approximation and its extensions are interesting not only
for the results themselves, but also for their many applications. We mention
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here some of them, namely in variational inequality problems ([1]), Hammer-
stein equations and Neumann problem ([7], [8]), generalized equations ([16]),
Kruzkov’s solutions of the Burger–Carleman’s system ([10]), projection algo-
rithms ([1]), Bregman algorithms ([3]), Fenchel–Rockafellar–Moreau duality mo-
del ([16], [17]), optimization problems, Hammerstein differential inclusions and
complementarity problems ([11]), and the list is far from being complete.

Within this paper we give a Brézis–Haraux-type approximation statement
for A∗ ◦ T ◦ A in Banach spaces. Then we specialize the result to approximate
the range of ∂(f ◦A), where f is a proper convex lower semicontinuous function
defined on the image space of A with extended real values, generalizing and
correcting the result given in [11] and [20] for the sum of the subdifferentials of
two proper convex lower semicontinuous functions which arises as special case.
Moreover, the regularity condition we impose is weaker than the one considered
in the mentioned papers in order to obtain the result. Finally we give two
applications, one in optimization and the other to a complementarity problem.

The paper is structured as follows. The next section contains necessary pre-
liminaries, notions and results used later, then we deal with the Brézis–Haraux-
type approximation for A∗ ◦ T ◦ A. Section 4 deals with the mentioned Brézis–
Haraux-type approximations for ∂(f ◦ A) and its special case concerning the
range of the sum of the subdifferentials of two proper convex lower semicontinu-
ous functions, and it is followed by two applications. An ample list of references
closes the paper.

2 Preliminaries

In order to make the paper self - contained we introduce here the context we
work within and we recall the necessary notions and results. Let X and Y be
two locally convex spaces, unless otherwise specified, and their continuous dual
spaces X∗ and Y ∗, endowed with the weak∗ topologies w(X∗, X) and w(Y ∗, Y ),
respectively. By 〈x∗, x〉 we denote the value of the linear continuous functional
x∗ ∈ X∗ at x ∈ X. Given a subset M of X, we denote by int(M) and cl(M) its
interior, respectively its closure in the corresponding topology. We call it closed
regarding the subspace Z ⊆ X if M ∩ Z = cl(M) ∩ Z and we have its indicator
function δM : X → R = R ∪ {±∞}, defined by

δM (x) =

{
0, if x ∈M,
+∞, otherwise.

For a function f : X → R, we have

· the domain: dom(f) = {x ∈ X : f(x) < +∞},
· the epigraph: epi(f) = {(x, r) ∈ X × R : f(x) ≤ r},
· the conjugate: f ∗ : X∗ → R given by f ∗(x∗) = sup{〈x∗, x〉 − f(x) : x ∈ X},
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· the subdifferential of f at x ∈ X where f(x) ∈ R: ∂f(x) = {x∗ ∈ X∗ :
f(y) − f(x) ≥ 〈x∗, y − x〉 ∀y ∈ X},

· f is proper : f(x) > −∞ ∀x ∈ X and dom(f) 6= ∅.

When f, g : X → R are proper functions, their infimal convolution is defined by

f�g : X → R, f�g(a) = inf{f(x) + g(a − x) : x ∈ X}.

For f : X → R and g : Y → R, we define the product function

(f × g) : X × Y → R × R, (f × g)(x, y) = (f(x), g(y)) ∀(x, y) ∈ X × Y.

Given a linear continuous mapping A : X → Y , its adjoint is

A∗ : Y ∗ → X∗, 〈A∗y∗, x〉 = 〈y∗, Ax〉 ∀(x, y∗) ∈ X × Y ∗.

For a proper function f : X → R we recall also the definition of the marginal
function of f through A as being

Af : Y → R, Af(y) = inf
{
f(x) : x ∈ X,Ax = y

}
∀y ∈ Y.

Consider also the identity function on X defined by

idX : X → X, idX(x) = x ∀x ∈ X.

Let us mention moreover that we write min (max) instead of inf (sup) when the
infimum (supremum) is attained.

Proposition 1. ([6]) Let A : X → Y be a linear continuous mapping and
f : Y → R a proper, convex and lower semicontinuous function such that f ◦A
is proper. Then

(i) A∗ × idR(epi(f ∗)) is closed in the product topology of (X∗, w(X∗, X))×R if
and only if for any x∗ ∈ X∗ one has

(f ◦ A)∗(x∗) = min{f ∗(y∗) : A∗y∗ = x∗}.

(ii) If A∗× idR(epi(f ∗)) is closed in the product topology of (X∗, w(X∗, X))×R,
then for any x ∈ dom(f ◦ A) one has ∂(f ◦ A)(x) = A∗∂f(Ax).

The second part of this section in devoted to monotone operators and some
of their properties. From now on we consider, within the whole paper, X and
Y Banach spaces. We denote by ‖·‖ the norm on X, while the one on X ∗ is ‖·‖∗.

Definition 1. ([22]) A mapping (generally multivalued) T : X → 2X∗

is
called monotone operator provided that for any x, y ∈ X one has

〈y∗ − x∗, y − x〉 ≥ 0 whenever x∗ ∈ T (x) and y∗ ∈ T (y).

Definition 2. ([22]) For any monotone operator T : X → 2X∗

we have
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· its effective domain D(T ) = {x ∈ X : T (x) 6= ∅},
· its range R(T ) = ∪{T (x) : x ∈ X},
· its graph G(T ) = {(x, x∗) : x ∈ X,x∗ ∈ T (x)}.

Definition 3. ([22]) A monotone operator T : X → 2X∗

is called maximal
when its graph is not properly included in the graph of any other monotone
operator T ′ : X → 2X∗

.

Let τ1 be the weakest topology on X∗∗ which renders continuous the follow-
ing real functions

X∗∗ → R : x∗∗ 7→ 〈x∗∗, x∗〉 ∀x∗ ∈ X∗,
X∗∗ → R : x∗∗ 7→ ‖x∗∗‖.

The topology τ in X∗∗×X∗ is the product topology of τ1 and the strong (norm)
topology of X∗ (cf. [15]).

Definition 4. ([15]) A monotone operator T : X → 2X∗

is called of dense
type provided that its closure operator T : X∗∗ → 2X∗

,

G(T ) =
{
(x∗∗, x∗) ∈ X∗∗ ×X∗ : ∃(xi, x

∗
i )i ∈ G(T ) with (x̂i, x

∗
i )

τ
−→ (x∗∗, x∗)

}

is maximal monotone, where ŷ denotes the canonical image of y in X ∗∗.

Different to Riahi ([20]) and Chbani and Riahi ([11]), where these operators
are called densely maximal monotone, respectively densely monotone, we de-
cided to name them as Gossez ([15]) did when he introduced them. By Lemme
2.1 in [15], whenever the monotone operator T : X → 2X∗

is of dense type one
has (x∗∗, x∗) ∈ G(T ) if and only if 〈x∗∗ − ŷ, x∗ − y∗〉 ≥ 0 ∀(y, y∗) ∈ G(T ).

The monotone operators belonging to the following class are also known as
star monotone operators or operators of the type (BH), being first introduced
in [8].

Definition 5. ([13], [17], [20]) A monotone operator T : X → 2X∗

is called
3∗ - monotone if for all x∗ ∈ R(T ) and x ∈ D(T ) there is some β(x∗, x) ∈ R

such that inf(y,y∗)∈G(T )〈x
∗ − y∗, x− y〉 ≥ β(x∗, x).

The last collection of monotone operators we introduce consists of so - called
negative - infimum monotone operators.

Definition 6. ([23], [24]) A monotone operator T : X → 2X∗

is called of type
(NI) if for all (x∗∗, x∗) ∈ X∗∗ ×X∗ one has inf(y,y∗)∈G(T )〈ŷ− x∗∗, y∗ − x∗〉 ≤ 0.
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Remark 1. The subdifferential of a proper convex lower semicontinuous func-
tion on X is a typical example for all these classes of monotone operators. We
refer to [15], [17], [18], [20], [21], [23], [24] and [25] for proofs and more on these
subjects.

There are some other types of monotone operators, like cyclic monotone,
but as they are not relevant for the results within this paper we do not mention
them here. Between these classes of monotone operators there are various rela-
tions, let us recall the ones necessary for our purposes.

Proposition 2. ([15]) In reflexive Banach spaces every maximal monotone
operator is of dense type and coincides with its closure operator.

We close the section by recalling an important result which proved to be
useful in the present work.

Lemma 1. ([20]) Given the dense type operator T : X → 2X∗

and the non
- empty subset E ⊆ X∗ such that for any x∗ ∈ E there is some x ∈ X fulfilling
inf(y,y∗)∈G(T )〈x

∗ − y∗, x− y〉 > −∞, one has E ⊆ cl(R(T )) and int(E) ⊆ R(T ).

3 Brézis–Haraux-type approximation of the range of a
monotone operator composed with a linear mapping

We give in this section the main results concerning the so - called Brézis–Haraux-
type approximation (cf. [8], [23]) of the range of a composed operator TA, de-
fined below, respectively of the subdifferential of the precomposition of a linear
continuous mapping with a proper convex lower semicontinuous function. Some
results related to ours were obtained by Pennanen in [17], but in reflexive spaces,
while we work in general Banach spaces.

Consider the monotone operator T : Y → 2Y ∗

and the linear continuous
mapping A : X → Y . We introduce the composed operator TA := A∗ ◦ T ◦ A :
X → 2X∗

. It is known that TA is a monotone operator and under certain con-
ditions it is maximal monotone (cf. [4], for instance). We show first that it is 3∗

monotone when T is 3∗ monotone, too.

Proposition 3. If T : Y → 2Y ∗

is 3∗ - monotone and A : X → Y is a
linear continuous mapping, then TA is 3∗ - monotone, too.

Proof. If D(TA) = ∅, then the conclusion arises trivially. Elsewise take
x∗ ∈ R(TA), i.e. there is some z ∈ X such that x∗ ∈ A∗ ◦ T ◦ A(z). Thus there
exists a z∗ ∈ T ◦ A(z) satisfying x∗ = A∗z∗. Clearly, z∗ ∈ R(T ). Consider also
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an x ∈ D(TA) and denote u = Ax ∈ D(T ). When y∗ ∈ TA(y) there is some
t∗ ∈ T ◦ A(y) such that y∗ = A∗t∗. We have

inf
(y,y∗)∈G(TA)

〈x∗ − y∗, x− y〉 = inf
(y,t∗)∈G(T◦A)

〈A∗z∗ −A∗t∗, x− y〉

= inf
(y,t∗)∈G(T◦A)

〈z∗ − t∗, A(x− y)〉

≥ inf
(v,t∗)∈G(T )

〈z∗ − t∗, u− v〉 ≥ β(z∗, u) ∈ R,

as T is 3∗ - monotone. Therefore, by definition, TA is 3∗ - monotone, too. 2

Next we give an auxiliary result needed in order to prove the main statement
of the section which comes after it.

Lemma 2. If T : Y → 2Y ∗

is 3∗ - monotone and A : X → Y is a linear
continuous mapping such that TA is of dense type, then

(i) A∗(R(T )) ⊆ cl(R(TA)), and
(ii) int(A∗(R(T ))) ⊆ R(TA).

Proof. The operator TA being of dense type implies that D(TA) 6= ∅, thus
D(T ) 6= ∅.

As T is 3∗ - monotone, we have for any s ∈ D(T ) and any s∗ ∈ R(T ) there
is some β(s∗, s) ∈ R such that β(s∗, s) ≤ inf(y,y∗)∈G(T )〈s

∗ − y∗, s− y〉.
Take some x∗ ∈ A∗(R(T )), thus there is an z∗ ∈ R(T ) such that x∗ = A∗z∗.

As in the proof of Proposition 3, for some x ∈ D(TA) there holds

inf
(y,y∗)∈G(TA)

〈x∗ − y∗, x− y〉 > −∞.

Now we can apply Lemma 1 for E = A∗(R(T )) and TA and we obtain exactly
(i) and (ii). 2

Theorem 1. If T : Y → 2Y ∗

is 3∗ - monotone and A : X → Y is a linear
continuous mapping such that TA is of dense type, then

(i) cl(A∗(R(T ))) = cl(R(TA)), and
(ii) int(R(TA)) ⊆ int(A∗(R(T ))) ⊆ int(R(TA)).

Proof. The operator TA being of dense type implies that D(TA) 6= ∅. Take
some x∗ ∈ R(TA). Then there are some x ∈ X and y∗ ∈ T ◦ A(x) ⊆ R(T ) such
that x∗ = A∗y∗. Thus x∗ ∈ A∗(R(T )), so R(TA) ⊆ A∗(R(T )) and the same
inclusion stands also between the closures, respectively the interiors, of these
sets, i.e.

cl(R(TA)) ⊆ cl(A∗(R(T ))) and int(R(TA)) ⊆ int(A∗(R(T ))). (1)
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On the other hand, by Lemma 2(i) we get immediately

cl(A∗(R(T ))) ⊆ cl(R(TA)) and int(A∗(R(T ))) ⊆ int(R(TA)). (2)

Relations (i) and (ii) follow immediately from (1) and (2). 2

Remark 2. The previous statement generalizes Theorem 1 in [20], which can
be obtained for Y = X×X, Ax = (x, x) and T (y, z) = (T1(y), T2(z)). The next
assertion extends Corollary 1 in [20] which arises for the same choice of Y , A
and T .

Corollary 1. If X is a reflexive Banach space, T : Y → 2Y ∗

is a 3∗ -
monotone operator and A : X → Y is a linear continuous mapping such that
TA is maximal monotone, then one has

cl(A∗(R(T ))) = cl(R(TA)) and int(R(TA)) = int(A∗(R(T ))).

Proof. As X is reflexive, Proposition 2 yields that TA is maximal monotone
of dense type and TA and TA coincide. Theorem 1 delivers the conclusion. 2

4 The approximation of the range of the subdifferential of a
function composed with a linear mapping

We generalize now Corollary 2 in [20] and Corollary 3.2 in [11], providing a
Brézis–Haraux-type approximation of the range of the subdifferential of the
precomposition of a proper convex lower semicontinuous function with a linear
continuous mapping. Moreover we correct the mentioned results which are im-
proved further by considering a weaker constraint qualification under which one
can give the Brézis–Haraux-type approximation of the range of the sum of the
subdifferentials of two proper convex lower semicontinuous functions. First we
give the constraint qualification that guarantees our more general result,

(CQ) A∗×idR(epi(f ∗)) is closed in the product topology of (X∗, w(X∗, X))×R.

Theorem 2. Let the proper convex lower semicontinuous function f : Y →
R and the linear continuous mapping A : X → Y such that f ◦A is proper, and
assume (CQ) valid. Then one has

(i) cl(A∗(R(∂f))) = cl(R(∂(f ◦ A))), and
(ii) int(R(∂(f ◦ A))) ⊆ int(A∗(R(∂f))) ⊆ int(D(∂(A∗f∗))).

Proof. As f ◦ A is proper, convex and lower semicontinuous, by Théoréme
3.1 in [15] we know that ∂(f ◦A) is an operator of dense type, while according
to Theorem B in [21] (see also [17], [20]) ∂f is 3∗ - monotone.
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By Proposition 1(ii) we know that (CQ) implies A∗ ◦ ∂f ◦ A = ∂(f ◦ A).
Therefore A∗ ◦ ∂f ◦A is an operator of dense type, too.
Applying Theorem 1 for T = ∂f we get

cl(A∗(R(∂f))) = cl(R(A∗ ◦ ∂f ◦ A)) = cl(R(∂(f ◦ A)))

and
int(R(A∗ ◦ ∂f ◦ A)) ⊆ int(A∗(R(∂f))) ⊆ int(R(A∗ ◦ ∂f ◦A)).

The relation above that involves closures yields (i), while the other becomes

int(R(∂(f ◦A))) ⊆ int(A∗(R(∂f))) ⊆ int(R(∂(f ◦A))). (3)

As from Proposition 1(i) one may deduce that under (CQ) A∗f∗ = (f ◦ A)∗,
by Théoréme 3.1 in [15] we get R(∂(f ◦ A)) = D(∂(f ◦ A)∗) = D(∂(A∗f∗)).
Putting this into (3) we get (ii). 2

When one takes Y = X × X, Ax = (x, x) and f(x, y) = g(x) + h(y), for
x, y ∈ X, where g and h are functions defined on X with extended - real values,
the constraint qualification (CQ) becomes (cf. [6])

(CQs) epi(g∗)+epi(h∗) is closed in the product topology of (X∗, w(X∗, X))×R

and one obtains the following statement.

Corollary 2. (see also [5]) Let g and h be two proper convex lower semi-
continuous functions on the Banach space X with extended real values such that
dom(g) ∩ dom(h) 6= ∅. Assume (CQs) satisfied. Then one has

(i) cl(R(∂g) +R(∂h)) = cl(R(∂(g + h))), and
(ii) int(R(∂g+ ∂h)) ⊆ int(R(∂g) +R(∂h)) ⊆ int(D(∂(g∗�h∗))) = int(D(∂((g+

h)∗))).

Proof. We apply Theorem 2 and Proposition 1 for Ax = (x, x) and f(y, z) =
g(y) + h(z) for any (y, z) ∈ Y = X × X. One can easily verify that (f ◦
A)(x) = g(x) + h(x), A∗(y∗, z∗) = y∗ + z∗ ∀(y∗, z∗) ∈ X∗ × X∗ and A∗f∗ =
g∗�h∗. Moreover, A∗(R(∂f)) = A∗(R(∂g) × R(∂h)) = R(∂g) + R(∂h) and
A∗ × idR(epi(f ∗)) = epi(g∗) + epi(h∗).

By Proposition 1(ii) we have that (CQs) yields ∂(g + h) = ∂g + ∂h.
Using the remarks above, from Theorem 2 we get cl(R(∂(g+h))) = cl(R(∂g)+

R(∂h)) and

int(R(∂(g+h))) ⊆ int(R(∂g)+R(∂h)) ⊆ intD(∂(g∗�h∗)) = int(D(∂(g+h)∗)),

the last equality arising by Proposition 1(ii). 2
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We remark that this proof is different from the one in [5].
Similar results have been obtained by Riahi in Corollary 2 in [20] and by

Chbani and Riahi in Corollary 3.2 in [11], under the constraint qualification

(CQR) ∪
t>0

t(dom(g) − dom(h)) is a closed linear subspace of X.

In [20] (CQR) is said to imply

cl(R(∂g)+R(∂h)) = cl(R(∂(g+h))) and int(R(∂g)+R(∂h)) = int(D(∂(g∗�h∗))),

while according to [11] it yields

cl(R(∂g)+R(∂h)) = cl(R(∂(g+h))) and int(R(∂g)+R(∂h)) = int(D(∂(g+h)∗)).

We prove that the latter is not always true when (CQR) stands. For a
proper, convex and lower semicontinuous function g : X → R (by taking h ≡ 0)
Riahi’s relation would become int(R(∂g)) = int(D(∂g∗)), which is equivalent,
by Théoréme 3.1 in [15], to

int(R(∂g)) = int(R(∂g)). (4)

From Théoréme 3.1 in [15] we know that ∂g is a monotone operator of dense
type and, from [21], that it is maximal monotone, too. By [24] we know that ∂g
is also of type (NI).

By Theorem 20 in ([24]) we get that int(R(∂g)) is convex, so (4) yields that
int(R(∂g)) is convex, too.

Unfortunately this is not always true, as Example 2.21 in [18], originally
given by Fitzpatrick, shows. Take X = c0, the space of the real sequences
converging to 0, which is a non - reflexive Banach space with the usual norm
‖x‖ = supn≥1 |xn| ∀x = (xn)n≥1 ∈ c0, and g(x) = ‖x‖ + ‖x − e1‖, for all
x ∈ c0, where e1 = (1, 0, 0, ...) ∈ c0. It is clear that g is proper, convex and
continuous on c0, since ‖ · ‖ has these properties. Moreover for any x ∈ c0 one
has ∂g(x) = ∂‖ · ‖(x) + ∂‖ · −e1‖(x).

The dual space of c0 is l1, which consists of all the sequences y = (yn)n≥1

such that ‖y‖∗ =
∑+∞

n=1 |yn| < +∞. Denote by F the set of sequences in l1

having finitely many non - zero entries and by B∗ the closed unit ball in l1.
It is known that ‖ · ‖∗(y) = 0 if ‖y‖∗ ≤ 1 and ‖ · ‖∗(y) = +∞ otherwise,

which leads to ∂‖ · ‖(x) = B∗ if x = 0, ∂‖ · ‖(e1) = {e∗1}, ∂‖ · ‖(−e1) = {−e∗1}
and ∂‖ · ‖(x) = {y ∈ l1 : ‖y‖∗ ≤ 1, 〈y, x〉 = ‖x‖} ⊆ F , otherwise, where
e∗1 = (1, 0, 0, ...) ∈ l1. Moreover we have ∂‖ · −e1‖(x) = ∂‖ · ‖(x − e1) for any
x ∈ c0. Further one gets ∂g(0) = −e∗1 + B∗ and ∂g(e1) = e∗1 + B∗. Otherwise,
i.e. if x ∈ c0\{0, e1}, ∂g(x) ⊆ F . Therefore

R(∂g) ⊆ (−e∗1 +B∗) ∪ (e∗1 +B∗) ∪ F. (5)
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Since int(R(∂g)) includes int(B∗) ± e∗1, assuming it convex yields 0 = 1/2(e∗1 −
e∗1) ∈ int(R(∂g)). Hence there is a neighborhood of 0, say U , completely included
in R(∂g). Take some λ > 0 sufficiently small such that

ν(λ) =

(
0,
λ

22
,
λ

23
,
λ

24
, ...

)
∈ U.

Thus ν(λ) ∈ R(∂g). One can check that ‖ν(λ) ± e∗1‖∗ = 1 + λ
2 > 1, so, taking

into consideration (5), ν(λ) must be in F . It is clear that this does not hap-
pen, thus we have obtained a contradiction. Therefore int(R(∂g)) is not convex,
unlike int(R(∂g)). Thus (4) is false and the same happens to the allegations
concerning the interior of the sum of the ranges of two subdifferentials in [11]
and [20].

Remark 3. As proven in Proposition 3.1 in [9] (see also [6]), (CQR) implies
(CQs), but the converse is not true, as shown by Example 3.1 in [9]. Therefore
our Corollary 2 extends, by weakening the constraint qualification, and corrects
Corollary 3.2 in [11] and Corollary 2 in [20].

5 Applications

We give in the following two applications of the results we have presented in
the previous section. Both of them generalize some earlier statements that are
available in [11] under stronger requirements.

5.1 Existence of a solution to an optimization problem

We work within the framework of Corollary 2, i.e. let g and h be two proper
convex lower semicontinuous functions on the Banach space X with extended
real values such that dom(g) ∩ dom(h) 6= ∅.

Theorem 3. Assume (CQs) satisfied and moreover that 0 ∈ int(R(∂g) +
R(∂h)). Then there is a neighborhood V of 0 in X∗ such that ∀x∗ ∈ V there is
an x̄ ∈ dom(g) ∩ dom(h) where

g(x̄) + h(x̄) − 〈x∗, x̄〉 = min
x∈X

[g(x) + h(x) − 〈x∗, x〉].

Proof. By Corollary 2 we have int(R(∂g) +R(∂h)) ⊆ int(D(∂((g + h)∗))),
thus 0 ∈ int(D(∂((g + h)∗))), i.e. there is a neighborhood V of 0 in X∗ such
that V ⊆ D(∂((g + h)∗)). Fix some x∗ ∈ V . Immediately one gets that there is
some x̄ ∈ dom(g) ∩ dom(h) such that (g + h)∗(x∗) + ((g + h)∗)∗(x̄) = 〈x∗, x̄〉.
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As g+ h is a proper convex lower semicontinuous function we have (g + h)∗∗ =
((g + h)∗)∗ = g + h, thus the equality above becomes

g(x̄) + h(x̄) − 〈x∗, x̄〉 = −(g + h)∗(x∗) = − sup
x∈X

{〈x∗, x〉 − g(x) − h(x)}.

This means actually that the conclusion stands. Because of (CQs) we know (cf.
[6]) that

inf
x∈X

[g(x) + h(x) − 〈x∗, x〉] = max
p∈X∗

{−g∗(p) − h∗(x∗ − p)},

so one may notice that under the assumptions of the problem we obtain some-
thing that may be called locally stable total Fenchel duality, i.e. the situation
where both problems, the primal on the left-hand side and the dual on the right-
hand side, have optimal solutions and their values coincide for small enough lin-
ear perturbations of the objective function of the primal problem. Let us notice
moreover that as 0 ∈ V , for x∗ = 0 we obtain also the classical Fenchel strong
duality statement, but where moreover the primal problem has a solution, too.2

5.2 Existence of a solution to a complementarity problem

Further consider X a reflexive Banach space, let C ⊆ X be a closed convex cone
and S : X → 2X∗

a monotone operator. In order to formulate the statement we
have to introduce some new notions and to recall a recent result of ours.

To a monotone operator T : X → 2X∗

Fitzpatrick ([14], see also [4]) attached
the function

ϕT : X×X∗ → R, ϕT (x, x∗) = sup
{
〈y∗, x〉+ 〈x∗, y〉−〈y∗, y〉 : (y, y∗) ∈ G(T )

}
.

For any monotone operator T it is quite clear that ϕT is a convex lower semi-
continuous function as an affine supremum. Denote also ∆X = {(x, x) : x ∈ X}.

Theorem 4. ([5]) Given two maximal monotone operators T1 and T2 on X.
If the constraint qualification

(C̃Q) {(x∗ + y∗, x, y, r) : ϕ∗
T1

(x∗, x) + ϕ∗
T2

(y∗, y) ≤ r} is closed regarding the
subspace X∗ ×∆X × R,

is fulfilled then T1 + T2 is a maximal monotone operator.

Consider the complementarity problem

(CP )





x ∈ C, x∗ ∈ C∗,
〈x∗, x〉 = 0,
x∗ ∈ S(x).
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and the constraint qualification

(CQ) {(x∗ + y∗, x, y, r): (x∗, x, r) ∈ epi(ϕ∗
S), y ∈ C, y∗ ∈ −C∗} is closed

regarding the subspace X∗ ×∆X × R.

Theorem 5. Suppose that S is simultaneously maximal and 3∗ monotone,
assume (CQ) fulfilled and moreover that 0 ∈ int(R(S)−C ∗). Then the comple-
mentarity problem (CP ) admits a solution.

Proof. The conjugate function to δC and its subdifferential are

δ∗C(y∗) =

{
0, if y∗ ∈ −C∗,
+∞, otherwise.

and ∂δC(x) = {y∗ ∈ −C∗ : 〈y∗, x〉 = 0} ∀x ∈ C.

It is easy to notice that R(∂δC) ⊆ −C∗ and ∂δC(0) = −C∗, thus R(∂δC) = −C∗.
It is also straightforward to see that finding a solution to (CP ) is equivalent

to proving the existence of some x ∈ C such that 0 ∈ S(x) + ∂δC(x) = (S +
∂δC)(x).

In order to apply Corollary 1 we need the maximal monotonicity of S+∂δC .
As suggested by Theorem 4 we calculate the Fitzpatrick function attached to
∂δC and its conjugate. We have for some pair (x, x∗) ∈ X ×X∗

ϕ∂δC
(x, x∗) = sup

(y,y∗)∈G(∂δC )
{〈y∗, x〉 + 〈x∗, y〉 − 〈y∗, y〉}

= sup
y∈C,y∗∈−C∗,

〈y∗,y〉=0

{〈y∗, x〉 + 〈x∗, y〉}

=

{
0, if x ∈ C, x∗ ∈ −C∗,
+∞, otherwise.

Its conjugate is, for (z∗, z) ∈ X∗ ×X,

ϕ∗
∂δC

(z∗, z) = sup
x∈C,

x∗∈−C∗

{〈z∗, x〉 + 〈x∗, z〉} =

{
0, if z ∈ C, z∗ ∈ −C∗,
+∞, otherwise.

It is not difficult to observe now that for T1 = S and T2 = ∂δC the constraint
qualification (C̃Q) turns into (CQ). This leads, by Theorem 4, to the maximal
monotonicity of S + ∂δC , so by Corollary 1, for the same choice of Y , A and S
as in Remark 2, one gets

int(R(S) −C∗) = int(R(S) +R(∂δC)) = int(R(S + ∂δC)),

as in this case TA = S + ∂δC and A∗R(T ) = R(S) +R(∂δC).
From the hypothesis we get 0 ∈ int(R(S + ∂δC)), thus 0 ∈ R(S + ∂δC), i.e.

there is some x ∈ C such that 0 ∈ S(x) + ∂δC(x) = (S + ∂δC)(x). As remarked
above, this is equivalent to the fact that (CP ) admits a solution. 2
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A Little Theory for the Control of an Assembly

Robot Using Farkas Theorem
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Abstract. In this paper the move of a robot arm is optimized via Benders decomposition.
The problem is modeled by a combinatorial optimization problem. By applying the famous
Farkas theorem it can be shown that even the continuous part of the decomposition reserves
its original combinatorial nature.
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sembly robot

1 Introduction

The problem of this paper has been motivated by printed circuit assembly. A
good survey on this topic is [2]. The results of the present paper can be applied
in all cases when a robot assembles a product and the objective is to minimize
the length of the move of the robot arm.

2 Technological arrangement

The task being assembled by the robot is in a fixed position. The components
are in a sequence of cells. Each cell contains a component of different type. Each
component has a well-defined position on the task where it is to be assembled.
The duration of the assembly of a component is an a priori given fixed value.
The only possibility to save time, i.e. to accelerate production, is to minimize
the total move of the robot arm.

When the assembly of a component is finished, the arm goes for the next
component to the appropriate cell from where there it goes to the position of
the next component on the task. Hence it follows that the total move of the arm
depends on both (i) the assignment of the components to cells, and (ii) the order
of the components in which they are assembled. Therefore the whole problem is
the "direct product" of the assignment problem of (i), and the traveling saleman

? email: vizvari@cs.elte.hu
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problem (TSP) of (ii). The distances among cells and positions are supposed to
be symmetric.

In this paper we shall suppose that the following two assumptions hold:

The number of cells is equal to the number of components. (A1)

Each component is used only once. (A2)

These assumptions simplify the problem, which still remains difficult enough to
be solved.

3 Problem formulation

To describe the problem mathematically the following notations are introduced:

n the number of cells and components
i the index of cells
j, k, l indices of components and positions
dik the symmetric distance of cell i and position k
xij is 1 if component j is assigned to cell i, otherwise it is 0
ykl is 1 if component l is assembled immediately after component k

Variables x and y are the decision variables. They must satisfy the following
constraints.

Each component is assigned to exactly one cell and vice versa:

n∑

j=1

xij = 1, i = 1, ..., n, (1)

and

n∑

i=1

xij = 1, j = 1, ..., n. (2)

Each component is assembled exactly once, i.e. the order of the components is
a Hamiltonian circuit:

n∑

k=1

ykl = 1, l = 1, ..., n, (3)

and

n∑

l=1

ykl = 1, k = 1, ..., n, (4)
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and

∀H ⊂ {1, 2, ..., n}, n >| H |≥ 2 :
∑

k∈H

∑

l∈H

ykl ≥ 1. (5)

All variables are binary:

xij, ykl ∈ { 0, 1 }, i, j, k, l = 1, 2, ..., n. (6)

The arm moves from position k of the task to cell i only if cell i contains
the component of the immediate successor position. Assume that the its index
is l. Thus until the next position the length of the move is dik +dil. These terms
of the distance function can be selected by the decision variables and the total
distance of the move of the arm to be minimized is:

min

n∑

k=1

n∑

l=1

n∑

i=1

dikyklxil +

n∑

i=1

n∑

l=1

dilxil. (7)

Thus the mathematical problem to be solved is to optimize (7) under the
conditions (1-6). This problem formulation has two drawbacks. At first there are
exponential many constraints in (5). We shall see that only those of them will
be used, which are violated. Secondly, the objective function (7) is nonlinear. It
can be linearized by the usual method. New variables, say wikl’s, are introduced
as follows:

wikl = xilykl i, k, l = 1, 2, ..., n. (8)

If both xil and ykl are zero-one variables then wikl is zero-one as well. It is
well-known that equation (8) is equivalent to the following inequalities

wikl ≥ xil + ykl − 1 i, k, l = 1, 2, ..., n (9)

and

2wikl ≤ xil + ykl i, k, l = 1, 2, ..., n (10)

assuming that

wikl ∈ { 0, 1 }, i, k, l = 1, 2, ..., n. (11)

Thus the new form of the objective function when it is multiplied by (-1) is

max

n∑

i=1

n∑

l=1

(−dil)xil +

n∑

k=1

n∑

l=1

n∑

i=1

(−dik)wikl. (12)

Consequently, our aim is to optimize (12) under the conditions (1)-(6), and
(10)-(11).



Control of an Assembly Robot Using Farkas Theorem 53

For the sake of convenience we need a compact form of the constraints, too.
Inequalities (1)-(2) and (3)-(5), respectively, contain only the variables x and
y, respectively. Thus these sets can be written separately. If it is necessary the
inequalities are multiplied by (-1). The final form is as follows

max cT x + 0Ty + fTw

A1x + Oy + Ow = e2n

Ox + B2y + Ow = (≤) b2

A3x + B3y + C3w ≤ b3

x,y ∈ { 0, 1 }n2

, w ∈ { 0, 1 }n3

,

(13)

where vectors c, and f are formed from the distances according to (12) and all
the components of the 2n-dimensional vector e2n are 1 and finally O is a zero
matrix of appropriate size. When a uniform notation is more convenient, b1 will
be used instead of e2n.

4 Benders decomposition in the general case

The Benders decomposition [1] is summarized in this section as it is the main
tool to develop our algorithm. It is very rarely referred in the literature. This
section does not contain new results.

The Benders decomposition is actually the dual of the Dantzig-Wolfe de-
composition. Here not the constraints but the variables are divided into two
parts. The first one represents a linear programming part while the second one
is arbitrary. The problem to solve is

max cT p + f(r)
Ap + F(r) ≤ b

p ≥ 0, r ∈ S,
(14)

where c, and p are s-dimensional vectors, A is a real matrix of size m × s,
f : Rt → R, and F : Rt → Rm are arbitrary functions, S is an arbitrary subset
of Rt and r is a t-dimensional vector.

For a fixed r̂ Problem (14) becomes the linear programming problem

max cTp + f(r̂)
Ap ≤ b− F(r̂)
p ≥ 0,

(15)

where the term f(r̂) in the objective function is only an additive constant. The
dual of (15) is

min (b − F(r̂))T u

AT u ≥ c

u ≥ 0.
(16)
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If Problem (16) has no feasible solution then Problem (15) is either un-
bounded or has no feasible solution for each particular r̂. Hence the original
problem has no optimal solution. Therefore in the rest of the paper it is as-
sumed that Problem (16) has at least one feasible solution.

An equivalent form of (14) can be obtained by introducing an objective
function variable, say z, and slack variables, say v0 and v, to obtain equations
instead of the inequalities. The new form of (14) is

max 0Tp + 0T r + z + 0v0 + 0Tv

−cTp − f(r) + z + v0 + 0Tv = 0
Ap + F(r) + 0z + 0v0 + v = b

p ≥ 0, r ∈ S, v0 ≥ 0, v ≥ 0.

(17)

The following theorem is an immediate consequence of the Farkas theorem
taking into account that the variables in Problem (17) with the possible excep-
tion of r, and z are nonnegatives.

Theorem 6 For a given pair (r̂, ẑ), where r̂ ∈ S and ẑ ∈ IR there exist vec-
tors p̂, and v̂ and a number v̂0 such that the 5-tuple (p̂, r̂, ẑ, v̂0, v̂) is a feasible
solution of Problem (17) if and only if the inequality

u0(f(r̂) − ẑ) + uT (b− F(r̂)) ≥ 0 (18)

holds for every real number u0 and vector u ∈ IRm such that

ATu ≥ cu0, u0 ≥ 0, u ≥ 0. (19)

The set of them+1-dimensional vectors (u0,u
T )T satisfying (19) is obviously

a pointed and polyhedral cone denoted by C. It is well-known that it is spanned
by the finite set of its extremal directions, say Q. If Inequality (18) holds for
all elements of Q then it holds for all of the elements of C. From computational
point of view the problem is that the set Q may have too many elements to
explore all of them as an initial step of the algorithm. Therefore a "column
generation" type algorithm should be developed, which uses only the elements
of Q, that are really required. As it will be seen this type of algorithm is of "row
generation" in the case of Benders decomposition.

Furthermore, if (û0, û) ∈ Q and û0 6= 0 then without loss of generality we
may assume that û0 = 1. Hence one can conclude that to test if a given pair
(r̂, ẑ) is a part of an optimal solution it is enough to solve Problem (16). Let û∗

be the optimal solution. Only the following cases may occur:
(i) optimal solution: If an optimal solution of Problem (16) exists and the

equation

ẑ = (b− F(r̂))T û∗ + f(r̂) (20)
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holds then the pair is optimal and the missing part p̂∗ of the optimal solution
can be obtained by solving Problem (15).

(ii) a new element of the set Q is explored: Assume that an optimal solution
of Problem (16) exists and the inequality

ẑ > (b− F(r̂))T û∗ + f(r̂) (21)

holds, where û∗ the optimal solution of Problem (16). Then, Inequality (18)

does not hold for the vector
(
1, û∗T

)T
. Therefore a new candidate for being

(r̂, ẑ) must be generated by taking into account this new inequality.
(iii) two new elements of the set Q is explored: Assume that no optimal

solution of Problem (16) exists but the objective function is unbounded. Assume
that Problem (16) is solved by the simplex method. At the very moment when
the unboundedness of the problem is recognized there are a current basic solution
and a extremal direction of the unboundedness, say û and t̂, respectively. Then
Inequality (18) must be satisfied for the vectors (1, û), and (0, t̂), too.

A candidate (r̂, ẑ) can be generated as follows. Let Q̂ be the subset of Q con-
sisting of the explored elements. Then the new candidate is an optimal solution
of the problem

max z

∀ (u0,u) ∈ Q̂ : u0(f(r) − z) + uT (b − F(r)) ≥ 0
r ∈ S.

(22)

Thus the Benders decomposition solves the difficult Problem (14) by a fi-
nite alternating sequence of Problems (16), and (22), which are of type linear
programming and a pure not linear, e.g. in our particular case integer program-
ming.

It is worth to note that as there is no restriction on the set S, if there are
any constraints containing only the variables r, then the satisfaction of these
constraints can be included in the definition of the set S.

5 The frame of the Benders decomposition in the particular
case

This section consists of two parts. First the special structures of the coefficient
matrices of problem (13) are explored. On the based of it the particular form of
the Benders decomposition is described. Further special properties are discussed
in the next section.

In what follows, et is again the t-dimensional vector of all the components
of which are 1.

Assume that the order of the components in vector w is w111, w112, ..., w11n,
w121, ..., wnnn. Similarly let d11, d12, ..., d1n, d21, d22, ..., dnn be the order of the
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components in vector d formed from the distances. It is also assumed that the
order of the components in x is x11, x12, ..., x1n, x21, x22, ..., xnn. Then vector f ,
which is the vector of the objective function coefficients of w, is obtained by the
following matrix multiplication:

f =




−en 0 ... 0

0 −en ... 0

...
0 0 ... −en


d. (23)

The structure of the coefficient matrices of the constraints are as follows. A1 is
the matrix of an n× n assignment problem, i.e. its structure is this:

A1 =

(
A11

A12

)
,A11 =




eT
n 0T ... 0T

0T eT
n ... 0T

...
0T 0T ... eT

n


 ,A12 =

(
In In ... In

)
, (24)

where In is the n× n unit matrix. Constraints (3)-(5) describe the feasible set
of a TSP. Therefore B2 consists of three parts, i.e.

B2 =




B21

B22

B23


 , (25)

and
(

B21

B22

)
is again the matrix of an n× n assignment problem, i.e.

B21 = A11,B22 = A12. (26)

Constraint (5) excludes short circuits. In principle it excludes all of them, but in
practice only the explored ones. Therefore its rows are the negative characteristic
vectors of sets of components containing at least 2 and at most n−1 components.
The following notation is used:

B23 =




−vT
1

...
−vT

m


 , (27)

where

vi ∈ {0, 1}n, 2 ≤
n∑

k=1

vik ≤ n− 1, i = 1, ...,m.

The appropriate right-hand side vector, i.e. b2, is partitioned accordingly, i.e.

b2 =




b21

b22

b23


 =




en

en

−em


 . (28)
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The third set of constraints, i.e. Inequalities (10), and (9), describe the lin-
earization of the xilykl products. Notice that (9) must be multiplied by -1 to
obtain the form used in Problem (13). All the matrices A3, B3, and C3 and the
vector b3 are partitioned according to the two sets of constraints, i.e.

A3 =

(
A31

A32

)
, B3 =

(
B31

B32

)
, C3 =

(
C31

C32

)
, and b3 =

(
b31

b32

)
,

where the sizes of A31, and B31 are n3 × n2, the size of C31 is n3 × n3 and the
structure of these matrices is as follows:

A31 =




In 0 0 ... 0

...
In 0 0 ... 0

0 In 0 ... 0

...
0 In 0 ... 0

...
0 0 0 ... In

...
0 0 0 ... In




, (29)

B31 =




In2

...
In2


 , (30)

C31 = −In3, (31)

b31 = en3 . (32)

Furthermore

FA32 = −A31, B32 = −B31, C32 = −2C31, and b32 = 0. (33)

The Benders decomposition is applied with the following "casting" of the
variables. The role of the linear continuous variables, i.e. the role of the variables
p, is assigned to the vector x and the pair (y,w) plays the role of the vector r.

As it has great importance, the set S is given in a separated definition.

Definition 51 The set S is defined such that both y, and w are binary vectors
satisfying:

• wikl = 1 only if ykl = 1 and
• the vector y describes a Hamiltonian circuit.
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During the algorithm the requirement that y must define a Hamiltonian
circuit is handled dynamically, i.e. only the constraints are required that exclude
a potential non-Hamiltonian solution.

It is supposed that the vector u of the variables of Problem (16) is partitioned
into seven parts of the constraints. The seven parts are the two parts of the
assignment problem, i.e. (1) and (2), the assignment part of the TSP and the
exclusion of the small circuits, i.e. (3) and (4) together and (5), finally (9) and
(10). Then the particular form of Problem (16) for a fixed pair (ŷ, ŵ) is:

min







b1

b2

b3


 −




0 0

B2 0

B3 C3




(
ŷ

ŵ

)


T

u

subject to
(AT

1 ,0,A
T
3 )u ≥ d

u23 ≥ 0

u3 ≥ 0.

(34)

The particular form of the individual linear inequalities is

u11i + u12l +
n∑

k=1

u31ikl −
n∑

k=1

u32ikl ≥ −dil. (35)

Hence u = 0 is always a feasible solution of (34), as the distances are non-
negatives. It means that the assumption that (16) has a feasible solution is
automatically satisfied.

In the description of the algorithm the following notations are used:

• R is the set of pairs of binary vectors (y,w) satisfying that ykl = 0 implies
that ∀ i : wikl = 0.

• If (T ) denotes an optimization problem then let opt(T ) denote an optimal
solution of (T ) provided by any algorithm used to solve the problem.

• Similarly if (T ) is a linear programming problem then extr(T ) is the last
extremal point visited by the simplex method and

• direction(T ) is the direction such that the value of the objective function
is unbounded on the half-line started from extr(T ) along the direction
direction(T ).

• The set H consists of smaller circuits that appeared in a vector y, i.e. the
appropriate constraints (5) must be required for each H ∈ H.

• For a given vector y subcircuit(y) is one small, i.e. non-Hamiltonian circuit
appearing in y and

• circuit(y) is the number of circuits represented by y. It is 1 if and only if
y represents a Hamiltonian circuit.

• The variables depending on the iteration are the following:
– β the index of the iteration,



Control of an Assembly Robot Using Farkas Theorem 59

– Qβ the set of explored extremal points and directions,
– zβ the optimal objective function value of linear programming subprob-

lem,
– sβ the optimal value of the integer programming subproblem,
– (yβ ,wβ) the optimal solution of the integer programming subproblem

denoted by integerβ ,
– (x∗,y∗,w∗) the optimal solution of the original problem,
– uβ the extremal point obtained in the k-th iteration,
– vβ the extremal direction obtained in the k-th iteration.

Algorithm 5.1
1. Begin
2. Q0 := ∅
3. H := ∅
4. s0 := +∞
5. z0 := 0
6. (y0,w0) ∈ S {An arbitrary element}
7. β := 0

8. zβ = min







b1

b2

b3


 −




0 0

B2 0

B3 C3




(
yβ

wβ

)


T

u

subject to (34β)
(AT

1 ,0,A
T
3 )u ≥ d u23 ≥ 0 u3 ≥ 0

9. if zβ ≥ sβ − fTwβ

10. then

11. begin

12. goto 36.
13. end

14. if −∞ < zβ < sβ − fTwβ

15. then

16. begin

17. uβ :=opt(34β)

18. Qk+1 := Qβ ∪

{(
1
uβ

)}

19. end

20. else

21. if zβ = −∞
22. then

23. begin

24. uβ :=extr(34β)
25. vβ :=direction(34β)

26. Qβ+1 := Qβ ∪

{(
1
uβ

)
,

(
0
vβ

)}

27. end
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28. repeat

29. sβ+1 := max s
subject to

∀(u0,u) ∈ Qβ :

u0(f
Tw − s) + (uT

1 ,u
T
2 ,u

T
3 )







e2n

b2

b3


 −




0 0

B2 0

B3 C3




(
y

w

)
 ≥ 0

(integerβ)
(y,w) ∈ R

∀H ∈ H :
∑

k∈H

∑
l∈H ykl ≥ 1

30. (yβ+1,wβ+1) :=opt(integerβ)
31. if circuit(yβ+1) > 1
32. then H := H ∪ {subcircuit(yβ )}
33. until circuit(yβ+1) > 1
34. β := β + 1
35. goto 8.
36. y∗ := yβ

37. w∗ := wβ

38. x∗ := opt(max {(−d)T x | A1x = e2n, A3x ≤ b3 − B3y
∗ − C3w

∗, x ∈
{ 0, 1 }n×n}).

39. end

The correctness of the algorithm has not yet been proved as the problem in
Row 38 giving the optimal x part of the solution is a combinatorial optimization
problem instead of a pure linear programming one. The aim of the next section
is to prove that the current version of (15) reserves its combinatorial nature.

6 The combinatorial nature of the Benders decomposition in
the particular case

The particular form of (15) is

max (−d)T x

A1x = e2n

A3x ≤ b3 −B3ŷ −C3ŵ

x ∈ {0, 1}n2

.

(36)

Without the inequalities in the third row Problem (36) is an assignment problem.
The objective of this section is just to show that (36) behaves in the frame of the
Benders decomposition like an assignment problem, i.e. although it is defined
as an integer programming problem, it can be handled as a linear programming
problem. For the possible values of each pair of (ykl, wikl) there are the following
cases considering the appropriate constraints (9), (10) and the fact that (y,w) ∈
R.
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ykl wikl xil the binding constraint
1 1 1 (10)
1 0 0 (9)
0 1 – the case cannot occur
0 0 0,1 no binding constraint

These constraints may cause two types of infeasibilities. Then the appro-
priate sample of Problem (16) is unbounded. It is shown below that in both
cases it is possible to give a direction such that the objective function of (16) is
unbounded along it. To do so the following form of Farkas lemma is used.

Lemma 61 Let G be an m × n matrix and g an m-dimensional vector. The
n-dimensional vector of variables is denoted by t. If the system

Gt ≤ g (37)

has no solution then there is a nonnegative m-dimensional vector λ such that

GTλ = 0 and gTλ < 0. (38)

Assume that the linear programming problem

mingTµ

GTµ = d

is to be solved, where d is a fixed n-dimensional vector. Then if system (38) has
a solution then the linear programming problem either has no feasible solution,
or is unbounded. In the latter case the vector λ gives a direction such that
starting from any feasible solution the objective function is unbounded along
this direction.

When lemma 61 is applied to (36) then the particular form of the system
(37) is:

A1x = e2n, A3x ≤ b3 −B3ŷ −C3ŵ, −x ≤ 0, (39)

i.e. in this particular case the matrix G is

G =




A1

A3

−In×n


 . (40)

Similarly

g =




e2n

b3 −B3ŷ −C3ŵ

0


 . (41)
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As the first set of constraints is an equation system, it is allowed that their
multipliers take negative values, too.

Case 1. Too many 1’s are required. Assume that there are indices i1, i2, k1, k2, l
with i1 6= i2 such that ŷk1l = ŷk2l = ŵi1k1l = ŵi2k2l = 1 then the sum

n∑

i=1

xil

is at least 2 contradicting to the corresponding constraint (2). Then the appro-
priate inequalities of type (9) are

−xi1k1
− ŷk1l + 2ŵi1k1l ≤ 0, −xi2k2

− ŷk2l + 2ŵi2k2l ≤ 0,

which are equivalent to

−xi1k1
≤ −1, −xi2k2

≤ −1 (42)

according to the current value of ŷ, and ŵ. Then the non-zero components of
the appropriate λ vector are as follows. The weight of the equation is

n∑

i=1

xil = 1,

and of the two inequalities of (42), and finally of the nonnegativity constraints

−xil ≤ 0 i = 1, 2, ..., n, i 6= i1, i2

are 1. The weight of all other constraints is 0. With this weight Relation (38)
is obtained. At the same time a direction of unboundedness of Problem (16) is
determined, which (with a zero first component) must be added to the set Q. It
is easy to check if this case occurs. If the answer is yes then command in Row
25 of the algorithm can be executed without applying any linear programming
solver. The command in row 24 can be temporarily omitted as the extremal point
can be added later to the set Q (with the supplementary component 1). The
explanation is this. The scheme of Benders decomposition does not determine
the order in which the constraints of type (18) must be claimed. The only point
is that in each iteration at least one new constraint must be added to Problem
(22).

If there are indices i, k1, k2, l1, l2 such that l1 6= l2 and ŷk1l1 = ŷk2l2 =
ŵik1l1 = ŵik2l2 = 1 one can get Relation (38) in a similar way. It worth to note
that this type of infeasibility does not exist with k = k1 = k2 because then the
vector y is not a characteristic vector of a Hamiltonian circuit.

Case 2. Too few 1’s are allowed. Here it is supposed that Case 1 does not
occur. Not all xil might be 1 as in the case ykl = 1, wikl = 0 xil must be 0. Let P
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be the set of such pairs. The elements of P are called prohibited pairs of indices.
In any feasible solution of the original problem the matrix x must be such that it
contains in each row and in each column exactly one 1 and all other elements are
0. This requirement can be satisfied only if the maximal solution of the following
matching problem consists of n edges. Let V = {1, 2, ..., n} ∪ {1̂, 2̂, ..., n̂} be the
set of vertices. The set of edges is E = {(i, ĵ) | 1 ≤ i, j ≤ n} \ P. Kœnig’s
theorem says that a matching of n edges exist if and only if for every nonempty
subset S of {1, 2, ..., n} the relation

|S| ≤ |{ĵ | ∃i ∈ S : (i, ĵ) ∈ E}|

holds.

The matching problem can be solved by a polynomial algorithm. If the
optimal value is n then Problem (15) has an optimal solution. If Case 1 does
not occur then still some variables xil might be fixed to 1 but no other variable is
fixed to 1 in its row, and column. These fixings must be taken into consideration
when the matching problem is solved.

If the optimal value of the matching problem is less than n then the multipli-
ers in (38) are these. Then there is a nonempty index set S ⊂ {1, 2, ..., n} and an-
other set T ⊂ {1̂, 2̂, ..., n̂} such that |S| > |T | and ∀ i ∈ S ∀ ĵ ∈ {1̂, 2̂, ..., n̂} \ T :
(i, ĵ) 6∈ E . The multipliers of Equations (1) belonging to indices i 6∈ S are 1.
The multipliers of Equations (2) belonging to an index ĵ 6∈ T are -1. The cur-
rent form of Constraints (9) for prohibited pair, i.e. if ykl = 1 and wikl = 0, is
xil ≤ 0. As all pair with (i, ĵ) with i ∈ S and ĵ 6∈ T are prohibited, therefore
the multipliers of all such constraints of type (9) are 1. Finally the multipliers
of the nonnegativity constraints of variables xiĵ with i 6∈ S and ĵ ∈ T are 1.
The multipliers of all other constraints are 0.

Thus Problem (15) or equivalently (34β) can be handled during the algo-
rithm as follows:

- At first Case 1 type of infeasibilities are eliminated.
-Then Problem (36) is reduced according to which xil’s must be 1. The re-

duced problem is solved with the following modified objective function (−d̂T )x,
where

−d̂il =

{
−dil if (i, l) 6∈ P
−∞ if (i, l) ∈ P.

Thus an assignment problem is obtained and it can be solved by some combi-
natorial algorithm. If the optimal value is finite then it is the optimal value of
the current Problem (36). Optimal solution can be generated e.g. via comple-
mentary slackness. If the optimal value is −∞ then Case 2 type of infeasibility
occurs and a direction of unboundedness is obtained.
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Invariant cones and polyhedra for dynamical systems
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Abstract. In this paper we study the mathematical modeling of some unsteady physical pro-
cesses by time dependent differential equations and their numerical approximations. The focus
is on examining whether some physical properties, such as invariance in time of some convex,
closed polyhedral sets of the state space by the state variables were preserved in the mathe-
matical modeling, particularly at the numerical solution of the corresponding time dependent
differential equations. We determine time step sizes for Runge-Kutta time discretization meth-
ods by a practically simple and useful formula that guarantee the discrete invariance property.
From the results we can see that the existence of such positive step sizes is not automatically
fulfilled for high order and stable methods.
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1 Motivation and scope of the paper

Mathematical modeling of physical processes often leads to differential equations
(DEs). For a proper modeling we need not only a good approximation of the
physical quantities by the mathematical variables, which are typically solutions
or some functions of the solutions of the DE, but we want to preserve the basic
characteristics of the quantities of the physical process.

As an example, consider the unsteady heat conduction in a certain inho-
mogeneous body with known thermal diffusivity function σ > 0 of space and
suppose that there are no sinks nor sources of heat, moreover the temperature
is maintained fixed Tb at the boundary of the body.

We know from the basic principles of thermodynamics that in such situa-
tions heat can not flow from a colder place to a warmer one. Hence in all time
level the temperature of the coldest point and consequently the minimum of the
temperature increases (or at least not decreases) with time. Similarly, the max-
imal temperature of the body decreases (not increases) forward in time. More
formally, let T (t, x) denote the temperature at time t and space point x of the
body Ω, which is, for simplicity, supposed to be one dimensional of length ω;
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then we have

∀t > 0 : min
x∈Ω

T (t, x) ≥ min
x∈Ω

T (0, x) =: T0,min, (1)

∀t > 0 : max
x∈Ω

T (t, x) ≤ max
x∈Ω

T (0, x) =: T0,max. (2)

The basic mathematical model of this heat conduction process consists of
a parabolic partial differential equation (PDE) for the function u(t, x) repre-
senting the scaled temperature T (t, x)− Tb in the mathematical model, subject

to boundary and initial conditions:
∂u

∂t
=

∂

∂x
(σ(x)

∂u

∂x
) ; for t > 0, x ∈ [0, ω]

the boundary condition reads u(t, 0) = u(t, ω) = 0 (∀t ≥ 0) and the initial
temperature u(0, .) is given.

We know (see e.g. [12], Example VII.5.2.) that this model preserves the
examined thermodynamical properties corresponding to (1) and (2), namely

∀t > 0 : min
x∈[0,ω]

u(t, x) ≥ min
x∈[0,ω]

u(0, x) =: u0,min, (3)

∀t > 0 : max
x∈[0,ω]

u(t, x) ≤ max
x∈[0,ω]

u(0, x) =: u0,max. (4)

The mathematical model based on the PDE is useful to answer several
questions of physics. However, for quantitative results we usually has to ap-
proximate u numerically. This means that we prescribe discrete time points
t0 = 0 < t1 < ... < tM and points in space x1, x2, ..., xN ∈ Ω and approximate
the solution of the PDE problem at these points as u(tn, xk) ≈ un,k for all n, k.

One way of deriving such a full discretization may be obtained in two steps
by the method of lines: first, in the so-called semi-discretization we discretize
the space variable only as u(t, xk) ≈ Uk(t) (t ≥ 0, k = 1, ..., N) and then, in
the second step, Uk(t) is approximated further at discrete time points t = tn by
un,k. This finally gives u(tn, xk) ≈ Uk(tn) ≈ un,k.

In the semi-discretization we can approximate, for example, the partial
derivatives in the space variable by some difference formulas based on the
u(t, xk) ≈ Uk(t) values. This issues in a system of ordinary differential equa-
tions (ODEs) subject to an initial condition for the vector valued function U
with U(t) = (U1(t), ..., UN (t))T (for all t ≥ 0); this problem can be considered
the mathematical model of the physical process as well. One of these ODE sys-
tems may be obtained by using two-point central differences resulting in the
ODE U ′(t) = LU(t) with a tridiagonal matrix L with non-negative off-diagonal
entries and dominant diagonal (see [3], [10]). For the validity of the examined
physical principle we need that U(0) ∈ C := [u0,min, u0,max]N should imply
U(t) ∈ C for all t > 0; and this can be proven in fact.

In the next step we approximate the solution of the ODE subject to the ini-
tial condition numerically, for example by a Runge-Kutta method (for definition
see Section 4.1) below. This produces approximate values un = (un,1, ..., un,N )T
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to U(tn) for all n. To ensure the physical principle be in force we need that
u0 ∈ C should imply un ∈ C for all n = 1, 2, ... (“discrete forward invariance”).

The goal of the paper is to examine this discrete invariance property in a
much more general settings: we consider system of non-linear differential equa-
tions, discrete invariance of C when it is a convex, closed polyhedral set and
arbitrary Runge-Kutta methods for discretization. For such problems we are to
find and analyse conditions on the time step sizes of the method that guarantee
the discrete invariance of C.

2 Definitions, notations

We denote the state space of the dynamical system by V . For simplicity we
assume that V = IRN , although most of the results of the paper hold true for
general Banach spaces in the present form. Let f : V → V be a fixed continu-
ously differentiable function. The semiflow Φ : [0,∞) × V → V is generated by
the differential equation with right hand side function f

u′(t) = f(u(t)), t ≥ 0. (5)

For simplicity we suppose that (5) equipped with the initial condition u(0) = u0

has a unique solution u : [0,∞) → V for all u0 ∈ V . Then, with this solution,
Φ(t, u0) := u(t) (t ∈ [0,∞), u0 ∈ V ).

We call the subset C of V positively (or forward) invariant w.r.t. Φ iff the
trajectories emanating from C remain completely in C, namely iff

∀u0 ∈ C ∀t ≥ 0 : Φ(t, u0) ∈ C.

Positive invariance of closed, convex sets can be characterized by their tan-
gent cones, see Lemma 2 below. The tangent cone (see also [1] and the references
therein) of C at c ∈ V is T (c) = TC(c) with

TC(c) := {z ∈ V | lim inf
h→0+

dist(c+ hz, C)

h
= 0 } (6)

where dist(x, C) := inf
y∈C

‖x − y‖. Clearly, TC(c) equals V or ∅ whenever c is an

interior or exterior point of V , respectively. Hence TC(c) can be non-trivial only
if c ∈ ∂C, i.e. at the boundary points of C. In the latter case TC(c) contains the
vectors which point to the direction of C or are tangent to C when applied at c
(for an illustration see Figure 1).

In this paper we shall investigate whether special polyhedral convex sets,
e.g. cones and polyhedra, are positively invariant w.r.t. a semiflow Φ. We call a
subset of V polyhedral if it is the intersection of finitely many closed halfspaces;
the compact polyhedral sets are called polyhedra. Hence, making use of the
notation PP,p := {x ∈ V | Px ≥ p} for P ∈ IRK×N and p ∈ IRK , C is a
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Fig. 1: The tangent cones of a convex set at two points.

• polyhedral set iff C = PP,p with some P ∈ IRK×N and p ∈ IRK ;
• polyhedral cone iff C = PP,0 with P ∈ IRK×N ;
• polyhedron iff C = PP,p with P ∈ IRK×N , p ∈ IRK whenever 6 ∃x1, x2 ∈ C :
P (x1 − x2) ≥ 0.

Lemma 1. 1. If C is convex, c ∈ C, z ∈ V , ε > 0, c+ εz ∈ C, then c+ ε̃z ∈ C
holds for all ε̃ ∈ (0, ε).

2. Let C be polyhedral and c ∈ ∂C. Then z ∈ T (c) iff ∃ε > 0 : c+ εz ∈ C.

Proof. The first assertion follows from the convexity of C and the identity c +
ε̃z = ε̃

ε(c+ εz) + (1 − ε̃
ε)c, while the second one from the definitions. ut

3 Positively invariant sets for continuous-time semiflows

In this section first we present a necessary and sufficient condition, (7), which
means that a convex, closed set C is positively invariant w.r.t. Φ. Then this
condition is simplified equivalently for polyhedra resulting in (8).

Lemma 2. (necessary and sufficient condition for positive invariance). Let C
be convex and closed. Then C is positively invariant w.r.t. Φ iff

∀c ∈ ∂C : f(c) ∈ TC(c). (7)

Moreover, if C is a polyhedron then C is positively invariant w.r.t. Φ iff

∃ε > 0 : ∀c ∈ C c+ εf(c) ∈ C. (8)

Proof. The first assertion of the lemma is called Nagumo’s lemma and its proof
can be found e.g. in [4]; see also the references in [1].

Now suppose that C is a polyhedron. Hence, by Lemma 1, condition (7) is
equivalent with

∀c ∈ ∂C ∃ε > 0 : c+ εf(c) ∈ C.

Such an ε > 0 exists for c ∈ int C as well. By compactness of C and continuity of
f and hence that of ε(c) := sup{ε1 ∈ (0, 1]|c + ε1f(c) ∈ C} condition (8) follows
directly. ut
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3.1 Determination of a suitable ε > 0 for condition (8)

For practical applications it is advantegeous to know the size of ε for which
condition (8) holds, see Theorem 1 below. The following lemma constructs such
a suitable ε for polyhedral sets with non-obtused face angles. Hence this lemma
applies for several important cases such as the non-negative orthant (and the
other orthants), rectangles, acute simpleces.

Lemma 3. Let C be polyhedral with representation C = PP,p P ∈ IRK×N , p ∈
IRK, and let ϕi := (Pi1, ..., PiN )T denote the ith row of P . Suppose that C is
positively invariant w.r.t. Φ and ϕT

i ϕj ≤ 0 for all i 6= j.
Then condition (8) holds with ε = 1

` whenever

∀x ∈ C, ∀ i ∈ {1, ...,K} : −` ≤
ϕT

i f
′(x)ϕi

ϕT
i ϕi

≤ 0. (9)

Proof. Let ε = 1/` with ` defined in (9) and let c ∈ C and i ∈ {1, ...,K} arbitrary
and fixed; define

c̃ := c−
ϕT

i c− pi

ϕT
i ϕi

ϕi.

First we show that ϕT
i c̃ = pi and c̃ ∈ C. Indeed, ϕT

i c̃ = pi is trivial and for any
j 6= i there holds ϕT

j c̃− pj = (ϕT
j c− pj) − (ϕT

i c− pi)ϕ
T
j ϕi/ϕ

T
i ϕi ≥ 0 since the

terms in the round brackets are non-negative due to c ∈ C and ϕT
j ϕi ≤ 0 by the

conditions of the lemma.
Therefore c̃ ∈ ∂C and thus, by the positive invariance of C and Lemma 2,

there exists ε > 0 with c̃ + εf(c̃) ∈ C; this implies 0 ≤ ϕT
i (c̃ + εf(c̃)) − pi =

εϕT
i f(c̃), i.e. ϕT

i f(c̃) ≥ 0.
Then we have, by using the vector c̃ and applying the mean value theorem

to the function ϕT
i f and variables c and c̃ we obtain

ϕT
i (c+ εf(c)) − pi = (ϕT

i c− pi) + ε
(
ϕT

i f(c) − ϕT
i f(c̃)

)
+ εϕT

i f(c̃)

= (ϕT
i c− pi) + εϕT

i f
′(x)ϕi

ϕT
i c− pi

ϕT
i ϕi

+ εϕT
i f(c̃)

=

(
1 + ε

ϕT
i f

′(x)ϕi

ϕT
i ϕi

)
(ϕT

i c− pi) + εϕT
i f(c̃)

with some x from the segment joining c and c̃, which proves ϕT
i (c+εf(c))−pi ≥

0. ut

Remark 1. One can observe the Rayleigh quotient of f ′(x) in (9). Hence the
infimum of the smallest eigenvalues of the Jacobian matrices f ′(x), x ∈ C is
suitable for the first inequality of (9) and the infimum is certainly finite for
compact polyhedral sets. However, usually one can find a smaller ` for (9).
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4 Discretization of Φ

Suppose that we are given a time grid 0 = t0 < t1 < ... with time step sizes
hn := tn+1 − tn. Let us approximate the trajectories of the dynamical system
at time points tn as

un ≈ Φ(tn, u0), n = 0, 1, 2, ..., u0 ∈ V.

We consider “one-step” discretizations, i.e. approximations when

un+1 = Ψ(hn, un), n ≥ 0, u0 given. (10)

Here Ψ : [0,Hdef ] × V → V depends on the discretization method and f . We
assume that Ψ is well-defined over [0,Hdef ] × V .

Definition 1. C is discrete positively invariant under the one-step method with
definition (10) (or shortly: under Ψ) with step size constant H ∈ (0,Hdef ] iff

∀u0 ∈ C : (∀n : hn ∈ [0,H] ⇒ ∀n : un ∈ C)

whenever the sequence un is defined by (10).

The latter is equivalent with the condition that Ψ(h, .) maps C into itself for all
h ∈ [0,H]:

∀u ∈ C, ∀h ∈ [0,H] : Ψ(h, u) ∈ C.

4.1 Time discretization of Φ with Runge-Kutta methods

Runge-Kutta (RK) methods are well-known and widely used one-step methods
for discretization of semiflows, see e.g. [3].

The RK method with coefficient arrays A = (aij) ∈ IRs×s and b = (bi) ∈ IRs

is given by (10) with

Ψ(h, u) = u+ h
s∑

i=1

bi f(yi)

where yi, i = 1, . . ., s form the (unique) solution of the system of algebraic
equations

yi = u+ h
s∑

j=1

aij f(yj) i = 1, ..., s. (11)

This method being determined completely by its arrays is denoted by RK(A, b).
During this paper we assume that system (11) possesses a unique solution when-
ever u ∈ V and h ∈ [0,Hdef ] are arbitrary. For more details about unique
solvability and formulas for Hdef in terms of some other characteristics, esp.
measures of dissipativity of f see e.g. [3].

We remark that A and b are usually chosen according to the stability and
accuracy of the method.

We shall see below in the next sections that the scheme functions and the
absolute monotonicity radius of RK(A, b) play an important role in our analysis.
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Definition 2. The scheme functions of RK(A, b) are defined as

KA(z) := (I − zA)−1e, JA(z) := A(I − zA)−1,

Kb(z) := 1 + bT z(I − zA)−1e, Jb(z) := bT (I − zA)−1

where z is a real variable, e = (1, ..., 1)T ∈ IRs and I denotes here and throughout
the paper the identity matrix of appropriate order (here it is of s× s order).

Further, the absolute monotonicity radius of RK(A, b) is

R(A, b) := sup{r ≥ 0 |KA(−r), JA(−r),Kb(−r), Jb(−r) ≥ 0 }

(the supremum of the empty set is taken −∞).

Remark 2. It can be proven (see [11]) that in case R(A, b) > 0 the scheme
functions are absolutely monotonic, consequently non-negative on [−R(A, b), 0].
Hence, by Jb(0) = bT and JA(0) = A, A, b ≥ 0 is necessary for R(A, b) > 0.
This condition is violated by many methods that are used in practice (see e.g.
[3]). Moreover, R(A, b) = +∞ only for some first order methods, for example
for the implicit Euler method.

5 Discrete positive invariance of RK methods

Now we are in the position to formulate the main goal of the paper precisely as
follows:

Let Φ, C, RK(A, b) be given as above and suppose that C is positively invariant
w.r.t. Φ.

Construct H = H(f ; C;A, b) directly such that C is discrete positive invariant
under RK(A, b) with step size constant H.

Remark 3. This problem is considered in the literature by several authors for the
classical problem of non-negativity conservation, i.e. discrete positive invariance
of the positive orthant [0,∞)N , see e.g. [2], [5], [10], [6], [9] and the references
therein and for general cones in [7] and [8]. One of the conclusions of these papers
(see [2], [9]) is that such an H > 0 does not exist for all Φ, C and RK(A, b), see
[9] for counterexamples.

Theorem 1. Let f , Φ as above, C a convex, closed polyhedral set with non-
empty interior and ε > 0 such that (8) holds. Further let RK(A, b) be given with
R(A, b) > 0.

Then C is discrete positive invariant under RK(A, b) with step size constant
H where

H = min{εR(A, b), Hdef}. (12)
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Proof. Let u0 ∈ C, h ∈ [0,Hdef ]. We consider the first step (n = 0) as

u1 = u0 + h(bT ⊗ I)F (y) (13)

y = (e⊗ I)u0 + h(A ⊗ I)F (y) (14)

with

y :=



y1
...
ys


 , F (y) :=



f(y1)

...
f(ys)


 .

Note that here ⊗ denotes the Kronecker product of matrices, i.e. if Q ∈
IRq1×q2 and R ∈ IRr1×r2 are arbitrary matrices then Q⊗ R is the real q1r1-by-

q2r2 matrix with block structure Q⊗R =



Q1,1R . . . Q1,q2

R
...

...
Qq1,1R . . . Qq1,q2

R


.

One of the main idea of the proof is to write f in a quasy-linear form: f(v) =

−
1

ε
v+

1

ε
p(v) with p(v) := v+εf(v) and p(v) ∈ C whenever v ∈ C. Then, making

use of the notation P (y) := (p(y1), ..., p(ys))
T , we have F (y) = −

1

ε
y +

1

ε
P (y)

and P (y) ∈ Cs whenever y ∈ Cs. Hence (14) reads

y = (e⊗ I)u0 + (A⊗ I)(−
h

ε
y +

h

ε
P (y))

and, solving it formally to y we obtain by the term II := I ⊗ I with identity
matrices of order s× s and N ×N , respectively

y =

(
II +

h

ε
(A⊗ I)

)−1

(e⊗ I)

︸ ︷︷ ︸(
(I +

h

ε
A)−1e

)
⊗ I

u0 +
h

ε
(A⊗ I)

(
II +

h

ε
(A⊗ I)

)−1

(e⊗ I)

︸ ︷︷ ︸(
A(I +

h

ε
A)−1

)
⊗ I

P (y).

Substituting this formula into (13) and writing out the components of y and
using the notation of the scheme functions introduced in the previous section
we arrive at

yi = KA(−
h

ε
)i + u0 +

∑

j

h

ε
JA(−

h

ε
)ijp(yj) i = 1, ..., s (15)

u1 = Kb(−
h

ε
)iu0 +

∑

j

h

ε
Jb(−

h

ε
)ijp(yj). (16)

Moreover,

KA(−
h

ε
)i +

∑

j

h

ε
JA(−

h

ε
)ij = 1
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and

Kb(−
h

ε
) +

∑

j

h

ε
Jb(−

h

ε
)j = 1.

Thus, in (15) and (16) yi and u1 are written as convex combinations of u0 and
p(yj) which are elements of C whenever h

ε ≤ R(A, b) and yj ∈ C, respectively.
Finally, application of some continuation techniques (e.g. almost word-by-word
application that of Theorem 1 in [6]) results in the statement of the theorem.
ut

Remark 4. From the constructions in [9] it can be shown that H in (12) is the
largest possible constant for positive invariance of C = [0,∞)3 for some functions
f whenever RK(A, b) is irreducible and non-confluent.

Corollary 1. Applying Theorem 1 we arrived at a quite simple formula, es-
sentially h ≤ εR(A, b) for step sizes that guarantee discrete positive invariance
of C under RK(A, b). This gives us a practically useful means to determine a
priori the step sizes to be chosen for RK methods to possess the invariance prop-
erty: ε can be determined, for example, by applying Lemma 3 and R(A, b) by its
definition.

Example 1. Let us consider the heat conduction problem and its mathemati-
cal modeling as is given in Section 1 above with equidistant space grid. The
resulting ODE reads U ′ = LU with L = tridiag(ak, bk, ak+1) where ak =
σ(xk − ∆x/2)/(∆x)2, bk = −(ak + ak+1), ∆x = ω/(N + 1), xk = k∆x (for
all k). Consider C = [0, η]N with some η > 0 constant. Then, using the nota-
tions of the paper, C is the intersection of K = 2N half-spaces with ϕi = ei,
ϕN+i = −ei and pi = 0, pN+i = −η (i = 1, ..., N and ei is the ith unit
vector of IRN ). Simple calculation shows that condition (8) holds with ` =
mink(σ(xk −∆x/2)+σ(xk +∆x/2))/(∆x)2. Further, for the explicit Euler, the
implicit trapesoid rule (Crank-Nicolson method) and the implicit Euler method
the absolute monotonicity radius equals 1, 2, ∞, respectively. Hence these meth-
ods preserve the positive invariance of C with step sizes h ≤ H where H equals
1/`, 2/` and ∞, respectively. Observe that this condition is very severe for the
first two methods because ε = 1/` is proportional to (∆x)2 hence it is in prac-
tical situations (when N is large) very small. In contrast to these methods, the
implicit Euler method lets C invariant for all positive step sizes.
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Abstract. Gyula Farkas was an outstanding representative of the phenomenological physics.
He has followed continuously the evolution of the theory of electromagnetic phenomena. He
has obtained notable results related to the electromagnetic interaction of current elements,
the hidden relationships between the equations of Maxwell’s theory, and the consequences of
the Lorentz’s electron theory for the theory of the continuum.

He was between the few physicists, who have realized the importance of the theory of
relativity in the time of its founding. He was well informed both about the results of H.A.
Lorentz and A. Einstein. We emphasize two of his results: he has obtained formulae, equivalent
with the Lorentz transformations, in an original way; in the case of the electromagnetic field
in the vacuum, he has given the transformation formulae, different from the usual ones. It
follows from these transformation formulae, that there exists a reference system KF moving
with velocity n relative to K, for which the observers from K and K ′ give the same time and
the same E and B field vectors.
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The university education in Cluj began with the foundation of the Jesuit
college in 1581 by Stephanus Báthory, the prince of Transylvania and king of
Poland. However, university education was not continuous in the following pe-
riod.

The foundation of the modern university in Cluj was done in 1872, which in
a few years has reached European level. Many outstanding Hungarian scientists
have been appointed as professors at the university, one of them being Gyula
Farkas. He came to the university in 1887, and served it for 28 years. He was
equally interested in mathematics and physics.

Before coming to Cluj, he has studied mainly mathematics. He has achieved
recognized results in algebra, function theory and geometry. In 1881 he has
obtained his doctoral degree in mathematics as principal topic and in natural
sciences and astronomy as secondary topics.

After Gyula Farkas was appointed professor of theoretical physics at the uni-
versity of Cluj, he proved to be equally interested in physics, too. Between 1887
and 1892 he became familiar with the last achievements in physics. Beginning
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with 1893 he started his own, original research. After finding the research field
suitable for his abilities, he has enriched the theoretical physics with many new
results. In the followings we will show his results in the fields of electrodynamics
and relativity theory.

1 The first investigations

In the first years of his activity at the University of Cluj was decisive for him
the collaboration with the famous chemistry professor of the university, Rudolf
Fabinyi. He has approached theoretical physics through chemical physics. Farkas
was strongly influenced by the book of W. Ostwald, "Lehrbuch der allgemeinen
Chemie". His investigations concerning the theory of the galvanic elements
brought his attention to the electric current and to the transformation of energy
[1,2,3]. His ideas about the concept of energy reappeared also later, emphasized
also by the choice of the title of his electrodynamics lecture notes appeared in
1908 and 1913, "The propagation of the energy".

Farkas has published his results concerning the electric currents in his lecture
notes appeared in 1890. He has closed his investigations in this direction with
an article published in 1893 [4].

Ampère gave a law for the interaction between the elementary currents Ids
and I ′ds′, where I and I ′ stand for the electric current intensities. Gyula Farkas
has studied the interaction between the electric current in a closed circuit and
the elementary current I ′ds′. The force is given by the vectorial sum of the
elementary interactions. It is possible, that different elementary laws lead to the
same global result. Ampère has formulated the interaction law in two equivalent
forms from the point of view of the global effect. In his paper, Gyula Farkas has
given a method for obtaining all the equivalent elementary interaction laws.

The investigations related to electricity and magnetism made possible to
Gyula Farkas to find the way to the electrodynamics of Maxwell.

2 The investigations of Gyula Farkas in electrodynamics

A turning point in the scientific activity of Gyula Farkas was brought by an hon-
orable charge. He has represented the University of Cluj and the Mathematical
and Physical Society at a celebration in December 1892, at the University of
Padova, on the occasion of 300 years from Galileo’s inauguration as a chair. As
a part of the celebration he has received the Doctor Honoris Causa degree of the
University of Padova. Preparing to these celebration he got notice of Galileo’s
results on forced constrained motions. This problem became one of his main
interests in all of his activity. But it was also decisive that in Padova he has met
personally the famous professor from Göttingen, W. Voigt, who was one of the
most outstanding representative of the phenomenological school. Gyula Farkas
became one of the most consequent representative of this trend. In the second
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part of the 19th century one of the most important result of the phenomenolog-
ical physics was the electrodynamics of Maxwell. This new theory came rapidly
into the attention of Farkas.

Probably in the study of Maxwell’s theory Farkas was based on the two vol-
umes monograph by W. Voigt, "Kompendium der theoretischen Physik" pub-
lished in 1895 and 1896, and on the monograph by C. Cristiansen, "Elemente
der theoretischen Physik" published in 1894. He has written reviews on both of
these books.

He became very familiar with this new theory also because of his special
abilities and character.

Farkas regarded mathematics as one of the most excellent tool of physics. As
Galilei, he also declared "Nature speaks to us in the language of mathematics".
He knew very well this language, and if necessary, he was able also to enrich it.
He was one of the most outstanding Hungarian experts in vector analysis. His
only printed book, "Vector and simple inequalities theory", published in 1900,
and one of his papers [5] represent this field. Therefore he had no mathematical
problems at all regarding Maxwell’s theory, and this fact helped him to discover
the great importance of this new theory.

The new theories were always a challenge for him. He always was up to date
with the new publications, he received very quickly the new theories and built
them into the curriculum for students. He considered this the basic require-
ment for a conscientious career. He always emphasized, that even the teaching
of classical knowledge should be done only being up to date with the newest
achievements in science.

He has taught the electromagnetic theory on the level of his time, being an
example to other universities, which were more conservative. He accentuated
that the electromagnetic interaction has not an action at a distance character.
He has said, that "If somewhere electricity, magnetism or electric current occurs,
its influence, according to the theory, does not appear instantly at distance, but
it propagates with a finite velocity in all directions".

In his time most of the physicists accepted that the medium for the electro-
magnetic influences is a special matter called "aether", and Farkas had adopted
this idea. At September 22nd, 1907, in his speech on the occasion of his appoint-
ment as the rector of the University, he has said: "... the electric and magnetic
influences can be attributed to the tensions and to the transversal forces ap-
pearing in the bodies and in the aether, the weightless matter filling the space
between bodies, and with the propagation of these tensions from particle to
particle with a finite velocity, also the electric and magnetic influences will
propagate with this finite velocity in the space." And also later, in his lecture
notes published in 1914 entitled "Analytical mechanics", he has written about
the aether in rest, which fills the Universe till the infinity.

Adopting the existence of the aether withheld him to accept the electro-
magnetic field. He regarded only the electric charge as physical reality, and not
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the electromagnetic field. As a consequence, for him the basic equation of elec-
tromagnetism was the continuity equation expressing charge conservation. It is
well known, that from the Maxwell equations

rot H = −
∂D

∂t
+ je, div D = ρe (1)

one can derive the continuity equation

∂ρe

∂t
+ div je = 0. (2)

Gyula Farkas has regarded the equations (1) as the solutions expressed with
vector parameters of equation (2).

Farkas also found very useful the notions of magnetic charge density and
magnetic current density. Starting from the continuity equation

∂ρm

∂t
+ div jm = 0 (3)

he has derived

rot E = −
∂B

∂t
− jm, div B = ρm. (4)

After this, he had eliminated the quantities ρm and jm, obtaining the well known
Maxwell equations. It is interesting, that nowadays the physicists looking for the
magnetic monopoles are using the extended Maxwell equations similar to (4).

3 The investigations of Gyula Farkas in relativity theory

Gyula Farkas has followed in detail the evolution of electrodynamics and of the
electron theory of H. A. Lorentz, consequently he has recognized the importance
of the special relativity theory in the first years after its publication.

The works and the ideas of Lorentz helped him to approach to the relativity
theory. But the same ideas of Lorentz blocked him to reach the ideas of Einstein.

In his two papers published in Physikalische Zeitschrift in 1906 and 1907 [7,8]
he used the aether-hypothesis and the framework set up by Lorentz. Later he
has adopted an intermediary position, and in his papers written in the concept
of Lorentz has recognized the ideas of Einstein as a possible alternative. In his
paper published in 1915 he has written "The system of Einstein is self consistent,
and till now there are no experimental observations, with which the ’relativity
theory’ would not be compatible".

We can be certain, that he knew the articles of Einstein. This is attested
by the notes of Farkas, which we have found on the side of Einstein’s article
published in the 4th volume of Jahrbuch der Electronik und Radioactivität.

Gyula Farkas assumed a pioneer role, when since 1910 he has taken into
account the requirements of the relativity theory in the mechanics of elastic
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bodies and ideal fluids, and in the electrodynamics of continuous media. The
relativistic generalization of virtual change made possible to him to initiate the
relativistic treatment of constrained motions [9]. In his lecture notes published in
1908 entitled "The propagation of the energy" he has included also the relativity
theory, in the time when most of the physicists did not understand yet the
new theory. In 1922 he has attempted to explain gravitation within the special
relativity theory [11].

In the next part we present one of his results. Farkas derived some of the
transformation formulae of the relativity theory in an unusual way.

In establishing the Lorentz-Herglotz transformation formulae, expressing the
relationship between space and time, he had three basic assumptions:

1. The transformation is the mapping of spacetime systems.
2. There is a velocity, which has the same magnitude in both spacetime systems,

regardless of position, time or direction.
3. The transformation is finite.

In case of the second assumption he has thought to the velocity of light in
vacuum, in accordance with Einstein. In one of his papers he mentions, that the
assumptions No 1 and 2 were also formulated by C. Munari in the 23rd volume
of Rendiconti del Reale Academia dei Lincei [10].

Based on the three basic assumptions above, Gyula Farkas has obtained the
following transformation formulae

x′ + nt′ = x− nt (5)

t′ +
1

c2
(n · x′) = t−

1

c2
(n · x), (6)

where

n =
γ

1 + γ
v; γ =

(
1 −

v2

c2

)− 1

2

. (7)

In the case of the electromagnetic field in the vacuum, he has given the
transformation formulae, different from the usual ones

B′ +
1

c2
n×E′ = B−

1

c2
n×E (8)

E′ − n ×B′ = E + n ×B. (9)

>From the above one may obtain easily the usual transformation formulae.
Let us make the scalar product of both sides of Equation 5 by n, obtaining

(n · x′) + t′n2 = (n · x) − tn2.

Using this relationship and (6), we get

t′ = γ

[
t−

1

c2
(v · x)

]
. (10)
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Based on (5) and (10) one obtains

x′ = x + (γ − 1)(e · x)e− γvte, (11)

where
e =

v

v
. (12)

Starting from (8) and (9) we can get also the usual formulae. Let us multiply
vectorially (8) from left with e, taking into account (9) and the relationship
obtained from it

(e ·E′) = (e · E). (13)

By this procedure we arrive to the well known transformation formula

E′ = γE + (1 − γ)(e · E)e + γv(e ×B). (14)

If (9) is multiplied from left by e, and we take into account (8) and the
relationship obtained from it

(e ·B′) = (e · B), (15)

we get the usual transformation formula for the magnetic field

B′ = γB + (1 − γ)(e ·B)e − γ
v

c2
(e ×E) (16)

For the reversed formulae we can write

E = γE′ + (1 − γ)(e ·E′)e − γv(e×B′) (17)

B = γB′ + (1 − γ)(e · B′)e + γ
v

c2
(e ×E′). (18)

4 The deduction of the Lorentz-Farkas transformation
formulae

Because the lecture notes of Farkas, which contains the detailed proof of is
formulae, to our knowledge, are lost, we give our own deduction.

We assume, that the perpendicular component of the position vector x rel-
ative to the velocity vector v, does not change. Then

(v × x′) = (v × x), (19)

so we can write
v2x′2 − (v · x′)2 = v2x2 − (v · x)2. (20)
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We are looking for a linear transformation with the aid of the scalar quan-
tities t, t′, (v · x), (v · x′), and the vector quantities x, x′ and v

a1x
′ + a2t

′v = a3x + a4tv (21)

b1t
′ + b2(v · x′) = b3t+ b4(v · x). (22)

If the coefficients are functions of v2, for the reversed transformation we can
write

a1x− a2tv = a3x
′ − a4t

′v (23)

b1t− b2(v · x) = b3t
′ − b4(v · x′). (24)

Comparing the direct and the reversed relationships, one obtains the equalities

a3 = a1, a4 = −a2, b3 = b1, b4 = −b2. (25)

Using these, and dividing (21) and (22) by a1 and b1, respectively, we obtain

x′ +At′v = x−Atv (26)

t′ +B(v · x′) = t−B(v · x). (27)

Using the second basic assumption we obtain

x′2 − c2t′
2

= 0; x2 − c2t2 = 0. (28)

Using (26), (27) and (28) we can prove that B = A/c2. As a consequence, (27)
may be replaced by

t′ +
A

c2
(v · x′) = t−

A

c2
(v · x). (29)

For the origin of system K ′ one can write

x′ = 0 x = vt.

Using (26) and (29) we obtain for A the equation

v2

c2
A2 − 2A+ 1 = 0,

which has the solutions

A1 =
γ

γ + 1
; A2 =

γ

γ − 1
.

Because A2 is not finite for v = 0, according to the third basic assumption only
the solution A1 is acceptable. With this value from (26) and (29) we obtain the
transformation formulae (5) and (6).
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In the followings we make two observations concerning the derived transfor-
mation formulae, which we may call the Lorentz-Farkas formulae.

Let us consider a system KF which moves relative to K with velocity

vF = n =
γ

γ + 1
v, (30)

which has the direction of v. For an observer from K ′, the system KF moves
with

v′F =
−v + vF

1 − vvF

c2
= −vF , (31)

along the same direction given by v.
For the origin OF of the system KF , the observers of the systems K and K ′

may write
xF = vFt; x′

F
= −vFt

′, (32)

respectively. Taking into account (32) and (6), for the origin OF one obtains

t′F = tF . (33)

This special reference system KF , which has a special symmetry relative to the
systems K and K ′ may be called the Farkas reference system.

Our second observation concerns the transformation formula (6). Let us
consider the components of the position and velocity four-vectors, respectively

{x1, x2, x3, ict}; {γv1, γv2, γv3, icγ}.

Using these, we may construct the invariant scalar

−c2
[
t−

1

c2
(x · x)

]
. (34)

Including in this expression the data x, t,v = vF for system K and x′, t′,v =
−vF for system K ′, we obtain easily the transformation formula (6).

5 Transformation formulae for the electromagnetic field

In this section we will derive the transformation formulae (8) and (9) given by
Gyula Farkas.

The components of the electromagnetic field tensor in vacuum may be writ-
ten as

F12 = −F21 = B3; F23 = −F32 = B1; F31 = −F13 = B2

F41 = −F14 =
i

c
E1; F42 = −F24 = i

cE2; F43 = −F34 =
i

c
E3. (35)
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Using these quantities and the velocity four-vector components denoted by uν ,
we obtain

−
i

2c
εjνρσuνFρσ = γ

[
Bj −

1

c2
(v ×E)j

]
(36)

Fjνuν = γ[Ej + (v ×B)j ]. (37)

Using the same procedure as in the previous section, one may obtain from
equations (36) and (37) the transformation formulae (8) and (9), respectively.

Based on (14) and (16), for the system KF diverging from K with velocity
vF, we obtain

EF = γFE + (1 − γF )(e · E)e + γFvF (e ×B) (38)

BF = γFB + (1 − γF )(e ·B)e − γF
vF

c2
(e ×E), (39)

where

γF =

(
1 −

v2
F

c2

)− 1

2

=

√
1 + γ

2
(40)

The reversed transformation, fromKF toK ′, based on (17) and (18), is obtained

E′
F = γFE′ + (1 − γF )(e ·E′)e− γF vF (e×B′) (41)

B′
F

= γFB′ + (1 − γF )(e · B′)e + γF
vF

c2
(e×E′). (42)

Using (41) and (14), then (42) and (16), we obtain the following relations, which
expresses the symmetry of systems K and K ′ relative to KF

E′
F

= EF; B′
F

= BF. (43)

Here again, we observe the special symmetry features of the Farkas reference
system.

6 Conclusions

Gyula Farkas was one of the outstanding scientists of the Hungarian university
in Cluj, founded in 1872. In this paper we presented some results of Farkas
in electrodynamics and relativity theory. He has written his relativistic trans-
formation formulae using a reference system (which we may call Farkas-type),
symmetric relative to the two reference systems involved in the transformation.
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Abstract. Gyula Farkas, professor for theoretical physics in Kolozsvár at the end of the
nineteenth century, developed a mathematically rigorous formalization of thermodynamics.
Starting from the First and Second Law, as well as from the Farkas Lemma of thermodynamics,
he proved the existence of entropy and of a universal temperature scale. His original paper is
very terse, this is the first elaborate proof.
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1 Introduction

Gyula Farkas (1874 - 1930), sometimes called Julius Farkas in German publica-
tions, was a professor for theoretical physics at Kolozsvár when he published a
paper with a mathematically exact introduction of absolute entropy and tem-
perature in 1886, founded on a lemma and a theorem:

Farkas Lemma of Thermodynamics: In reversible processes, no body (or
system of bodies) can go adiabatically into a state to which it can go by
pure heat exchange, i.e. by changing only the temperature by supplying
or abstracting heat.

As a consequence, Farkas proved the

Farkas Theorem of Thermodynamics: In reversible processes, heat ele-
ments absorbed by a body (or a system of bodies) always have integrating
divisors, and one of them is an identical function of the empirical tem-
perature dS = d′Q/T , i.e. there is an absolute entropy and an absolute
temperature scale (up to a constant factor).
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Farkas did his work not only earlier than Carathéodory, but he proved the global
existence of the absolute temperature as integrating factor (using the Lebesgue
lemma), where Carathéodory did only a local proof. Farkas’ proof remained un-
noticed, perhaps for its extraordinary terseness; so the aim of this paper is to
present the results of Farkas with a comprehensive and elaborate proof.
We title the theorem the Farkas theorem of thermodynamics, since there is an-
other lemma by Farkas (which is nowadays known as the Farkas lemma); it is
about linear inequalities and mainly used for linear programming [1, 2].

2 Historical Remarks

Rudolf Clausius was the first to formulate the integral form of the Second Law[3],
but he based his reasoning on physical considerations (i.e. the Carnot process),
which could not be connected convincingly with mathematics. His main merit
was to give the law a clear mathematical form, namely that absolute temperature
is an integrating factor of heat

dS = d′Q/T (1)

This inspired Gustav Zeuner to look for an integrating factor to identify it with
the absolute temperature[4]. He has shown that the existence of entropy is a
consequence of the First Law. He had two main aims:

1. To deduce both the First and the Second Law from the principle of the
equivalence of heat and work without using any other principle.

2. Not to use the absolute temperature as a primary concept at the beginning,
rather to define it as a result.

But Zeuner - as well as Clausius, who objected strongly against Zeuner’s results
- did not investigate whether a solution exists: In fact, the existence is trivial
for two variables, but not for more. Woldemar Voigt, professor at Göttingen,
examined the expression of elementary heat in the case of n variables[5]. He
realized that the existence of an integrating factor for heat is mathematically
equivalent with the existence of n− 1 dimensional adiabatic surfaces (which are
the geometrical places of all those states that are adiabatically accessible from
a given state). Gyula Farkas noticed that Voigt only assumed the existence of
these surfaces, and supplied mathematical reasoning for the existence of these
surfaces, which Voigt referred to in the second edition of his book.
The other person connected to a mathematical deduction of thermodynamics
is Constantin Carathéodory[6]. It is interesting to remark that Caratheéodory
was a student of Max Born, who was a student of Voigt; so we might spec-
ulate whether Carathéodory knew about Farkas’ article. Carathéodory’s pos-
tulate system is one of the most elegant constructions of thermodynamics. It
shows that the so called adiabatic inaccessibility postulate is sufficient to en-
sure the existence of an integrating factor for the heat element of the First
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Law independently of the number of variables, i.e. d′Q can always be written
d′Q = t ds, where t and s are some (yet unspecified) functions. Only postulating
the existence of thermal equilibrium and introducing the concept of empirical
temperature, it can be shown that one of the possible functions depends only
on temperature. The deficiency of Carathéodory’s approach, however, is that it
merely proofs the local existence of entropy and absolute temperature[7].
Carathéodory’s postulate system is a deductive system, i.e. a general theorem
is postulated and its consequences tested directly - the theorem being the adi-
abatic inaccessibility principle for processes (meaning that in whatever small
neighborhood of a state there are states which are inaccessible by adiabatic
functions).
One of the most fascinating aspects of Carathéodory’s construction is that he
always makes a very clear distinction between mathematical principles and
pieces of physical experience. But the main difference to Farkas’ approach is
that Carathéodory built a mathematical formalism and looked for a physical
process to apply it to, whereas Farkas started with the First and Second Law
and deduced their mathematical consequences. For a more comprehensive and
historical overview see Refs. [8] and [9].

3 Mathematical Tools

The main mathematical knowledge needed is about Pfaffian expressions. A Pfaf-
fian form is a special case of a k-form, namely a 1-form. A differential equation
is called a Pfaffian expression, if it has the following form:

d′w = A1 (x1, x2, . . . , xn) dx1 + A2 (x1, x2, . . . , xn) dx2

+ . . . + An (x1, x2, . . . , xn) dxn. (2)

If dw is a so-called total (or exact) differential, the integral of dw = 0 is
independent of the path and the Pfaffian equation has a constant solution

η (x1, . . . , xn) = c. (3)

If d′w is not a total differential (the prime indicating this), then in certain cases
an integrating factor λ can be found, such that

λ d′w = dη = λA1 (x1, x2, . . . , xn) dx1

+ λA2 (x1, x2, . . . , xn) dx2 + . . .

+ λAn (x1, x2, . . . , xn) dxn, (4)

where dη is a total differential.
For two variables, a Pfaffian expression always has an integrating factor. How-
ever, if the equation has three or more variables, the existence of an integrating
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factor cannot be generally assumed. According to Carathéodory, the condition
of integrability can be stated topologically. There is an integrating factor, if and
only if there are points in every neighborhood of a given point, which cannot
be reached along curves representing solutions of the Pfaffian expression. The
connection between this mathematical theorem and his statement concerning
adiabatic processes is apparent. Nevertheless, the proof for the global existence
of the integrating factor is missing. Carathéodory chose a topological way to
prove the existence of an integrating factor for heat, whereas Gyula Farkas
showed that these conditions are satisfied for heat in thermodynamics by more
physical arguments.

4 The Farkas proof

Gyula Farkas made his considerations upon reading Voigt’s book and published
a paper in answer to it, which was translated into German as well [10, 11].

4.1 The general θ-function

Thermodynamic systems can be described by a number of state variables a, b, c, . . .
and an empirical temperature θ, so the heat flow can be expressed as

d′Q = Θ dθ +A da+B db+ C dc+ . . . , (5)

where Θ,A,B,C, . . . are Lipshitz-continuous and neither infinite (unphysical
due to the limited energy in universe) nor zero (Θ is obviously the heat capacity,
as the advanced reader recognizes), and d′ indicating that the differential is
not total, i.e. its integral is path dependent. As a direct consequence of the
Second Law, Farkas proved his lemma. For reversible adiabatic processes (since
d′Q = 0), this can be rewritten to get a new Pfaffian expression for θ:

dθ = −
A

Θ
da−

B

Θ
db−

C

Θ
dc+ . . . . (6)

Theorem 1. In the adiabatic equation, dθ is a total differential.

Proof. First, the Farkas lemma is introduced:
Farkas Lemma of Thermodynamics: In a reversible process, no system

can go adiabatically into a state to which it can go by only abstracting heat,
i.e. by only supplying or removing heat.

Proof. If this were possible, θi, a, b, c, . . . to θf , a, b, c, . . . would be an adiabatic
process and we could construct a circular process, which only transfers heat
from a hot to a cold reservoir. So the lemma holds.
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Fig. 1: θ as a function of a. With an a adiabatic process, d′Q = 0, the hatched area cannot
be reached due to the Farkas Lemma of Thermodynamics.

Farkas Corollary: The temperature θ is always entirely defined by the val-
ues of the other state variables. The Farkas corollary ensures that the adiabatic
equation (6) is integrable, that is

θ(a, b, . . .) = θ0 −

∫ a,b,...

a0,b0,...θ0

(
A

Θ
da−

B

Θ
db+ . . .

)
. (7)

If θ0 is constant, this is the equation for an adiabatic process. It means that
adiabatic processes can be identified by θ0. Further, fixing the state variables
as a0, b0, c0, . . ., and considering them as parameters, θ0 can be a new state
variable. The independent parameter set will be (a, b, c, . . . , θ0), and then the
empirical temperature θ, as dependent variable can be written as:

θ = θ (a, b, c, . . . , θ0) . (8)

Theorem 2. The θ-function is differentiable by its parameters a, b, c, . . . , θ0

Proof. Expanding the differential of θ by its parameters,

dθ =
∂θ

∂a
da+

∂θ

∂b
db+

∂θ

∂c
dc+ . . . . (9)

and comparing it with the earlier expression (6), we get for θ0 = const

∂θ

∂a
= −

A

Θ
,

∂θ

∂b
= −

B

Θ
,

∂θ

∂c
= −

C

Θ
, . . . , (10)

and hence for θ0 = const all the differentials exist and dθ is differentiable.
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Lemma 4. θ is a differentiable function of θ0 in every point except a set of
measure zero.

Proof. The theorem of Lebesgue on the differentiation of monotonous functions
implies the existence of a differential in every point except a set of measure
zero. The θ = θ0 function is monotonous because of the Second Law. Thus θ is
differentiable by θ0 everywhere except on a set of measure zero, too.

4.2 Constructing the Integrating Factor

To construct the integrating factor, we have to regard quasi-static adiabatic
processes; quasi-static is used in the sense of Uffink (see [8]), meaning that
changes in the process should take place so slow that the system can be regarded
in equilibrium up to a negligible error. Therefore, we have to take θ0 into our
considerations as well. So the expansion of the θ-differential is

dθ =
∂θ

∂a
da+

∂θ

∂b
db+

∂θ

∂c
dc+ . . . +

∂θ

∂θ0
dθ0 . (11)

With this, we can rewrite 5:

d′Q = Θ

(
−
A

Θ
da−

B

Θ
db−

C

Θ
dc− . . . +

∂θ

∂θ0
dθ0

)

+A da+B db+ C dc+ . . . (12)

= Θ
∂θ

∂θ0
dθ0 (13)

In each interval, where ∂θ0/∂θ does exist (according to the Lebesgue-theorem),

d′Q = Θ
∂θ

∂θ0
dθ0, (14)

In this form

Θ
∂θ

∂θ0
(15)

is the integrating factor. This approach shows as well that the integrating
factor exists almost everywhere, but it is not unique: Since the empirical tem-
perature scale θ can be chosen freely, there are many empirical entropies s as
well as many integrating factors, although we have the same physics.

We can introduce new variables s = f(θ0) (called empirical entropy), and ϕ
is the new the integrating factor:

ϕ = Θ
∂θ

∂θ0

dθ0
ds

. (16)

Now we can rewrite the equation to its final and well known form:

d′Q = ϕ ds (17)
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4.3 Absolute Temperature and Entropy

Theorem 3. There is a unique (absolute) temperature, which yields additive
entropy. It is called the absolute temperature scale.

Proof. Consider two bodies in thermal equilibrium. The heat flow can be ex-
pressed as follows:

d′Q1 = Θ1 dθ +A1 da1 +B1 db1 + C dc1 = ϕ1 ds1
d′Q2 = Θ2 dθ +A2 da2 +B2 db2 + C dc2 = ϕ2 ds2.

Here the Zeroth Law was assumed, that is there are no long-range interactions.
The two bodies are described only by their own state variables, i.e. they have
to be independent systems. The heat flow for the united system is the sum of
the flow for each of the systems:

d′Q = d′Q1 + d′Q2 = ϕ1 ds1 + ϕ2 ds2 = Φ dS. (18)

Substituting ai by si and expanding dS (which again has to be continuous by
the requirements), we get:

dS =
∂S

∂s1
ds1 +

∂S

∂s2
ds2 +

∂S

∂θ
dθ +

∂S

∂b1
db1 +

∂S

∂b2
db2 + . . . . (19)

Comparing with 18 and considering that s1, s2, θ, b1, b2, . . . are independent,
we get:

∂S

∂θ
= 0,

∂S

∂b1
= 0,

∂S

∂b2
= 0, . . . , (20)

and hence S depends only on s1 and s2. ϕ1/Φ and ϕ2/Φ are functions of s1 and
s2 only, since

dS =
ϕ1

Φ
ds1 +

ϕ2

Φ
ds2 (21)

has to depend upon s1 and s2 only. The ratios ϕ1/Φ and ϕ2/Φ, too, have to be
functions of s1 and s2 only, e.g.:

ϕ2

Φ
=

ϕ(θ, s1)

Φ(θ, s1, s2)
(22)

In order that this ratio is dependent only of s1 and s2, the θ-dependence has to
factor out in a universal function:

ϕ1 = f(θ)Ψ(s1)

ϕ2 = f(θ)Ψ(s2). (23)

This way we can define a new S in the form

dS1 = Ψ(s1) ds1
dS2 = Ψ(s2) ds2, (24)
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and we gained a new integrating factor, which is a universal function of the
empirical temperature for both systems:

ϕ1 = ϕ2 = T (θ). (25)

This integrating factor is a universal temperature scale defined for all systems
(and hence the entropy has a universal scale as well) with the property

d′Q = T dS. (26)

Now we can have a closer look to the set where θ as a function of θ0 is not
differentiable (the set of measure zero mentioned beforehand). For the heat we
have now:

d′Q = T (θ) dS(θ, a, b, c, . . .) (27)

T (θ) is a universal function. But S(θ, a, b, c, . . .) may change its slope at certain
points, since dS does not have to exist everywhere. From physics, we know that
this is indeed a property of entropy: It is not differentiable on phase transitions.
So we can identify these points with the phase transitions, and we see that the
Farkas theory reflects a further piece of physics in mathematical facts!
Thus Farkas’ construction leads directly from Clasius’ or from Kelvin’s postulate
and the Farkas lemma to the mathematically rigorous proof of the existence of
an integrating factor and its identification with absolute temperature, and the
definition of a entropy function.

5 Examples

5.1 The Ideal Gas

To illustrate this proof, we provide first an easy example how an integrating
factor can be found in a concrete problem, the ideal gas. For convenience, we
will consider one mole of an ideal gas with T (ideal gas temperature) being the
empirical temperature θ and a (the first state variable) being the volume V .
Θ = cv = 1.5R and R is the universal gas constant. Further, a = p, where
p = RTV −1 is the pressure.
We have to start with the expression for the heat:

d′Q = cv dT +
RT

V
dV. (28)

The adiabatic equation is
dT
T

= −
R

cvV
dV. (29)

Integrating this yields the equation of adiabatic curves

lnT = lnV − R

cv , (30)
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which is equivalent with

TV
R

cv = T0V
R

cv

0 . (31)

So we see that T0 is the constant of the adiabatic surface, which we labeled θ0

before: it gives the temperature value belonging to V0. From now on, V0 is a
fixed parameter, and we can solve for T0:

T = T0 (V/V0)
− R

cv . (32)

To get the integrating factor, we proceed like in 16:

∂θ

∂θ0
=

∂T

∂T0
= (V/V0)

− R

cv (33)

and thus the

d′Q = cvT
dT0

T0
(34)

Now we can calculate the entropy function, d′Q = T dS:

S =

∫
cv
T0

dT0 = cv ln(TV/V0)
R

cv = R lnT
cv

R V. (35)

So we have shown that the ideal gas temperature is the absolute temperature,
and we found a relation, which expresses the absolute entropy in terms of the
function V, T for the adiabatic surfaces.

5.2 The Radiation

An example, which is somewhat less trivial, so that it suits better as demonstra-
tion, is measuring the temperature of a gas by its heat radiation (from which
we know, by the Stefan-Boltzmann law, that the radiation goes with the fourth
power of the temperature. The energy is U = σ T 4V . Now we select θ = σ T 4)as
empirical temperature and the volume V the first variable a. We will show that
the calculations will lead to the real temperature form.
Again, we apply the Poisson formula for adiabatic processes (but this time the
radiation temperature is the empirical temperature scale):

d′Q = cv dθ + 4/3θdV (36)

where
cv = V (37)

Regrouping and integration yield the equation of adiabatic curves

θ = θ0(V/V0)
−4/3, (38)
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This equation describes the adiabatic surfaces. Now we can calculate the inte-
grating factor:

d′Q = V (V/V0)
−4/3 d(θ(V/V0)

4/3, (39)

that is
d′Q =

4

3
θ1/4 d(θ3/4V ) (40)

and by the requirement, that the universal temperature has to factor out, we
see that this must be

T =

(
θ

σ

)1/4

(41)

and the entropy is,

S =
4

3
σ1/4θ3/4V =

4

3
σ1/4U3/4V 1/4 (42)

As expected, the absolute temperature is proportional to the fourth root of
θ, we got back the well-known expressions for absolute entropy and absolute
temperature of the radiation.

References

[1] Farkas, G., Mathematikai és Természettudományi Értesítő 16, 361 (1896).
[2] Farkas, J., Journal für die Reine und Angewandte Mathematik, 124, 1

(1901).
[3] Clausius, R., Abhandlungen über die mechanische Wärmelehre (Vieweg

und Sohn, Braunschweig 1864).
[4] Zeuner, G., Grundzüge der mechanischen Wärmetheorie (1866), 2nd Ed.
[5] Voigt, W., Kompendium der Theoretischen Physik (Verlag von Veit und

Comp. 1895).
[6] Caratheéodory, C., Math. Ann. 67, 366 (1909).
[7] Bernstein, B., J. Math. Phys. 1, 222 (1960).
[8] Uffink, J., in Entropy, edited by A. Greven, G. Keller, and G. Warnecke

(Princeton University Press, 2001), pp. 121-147.
[9] Martinás, K., Brodszky, I., Periodica Polytechnica Ser. Chem. Eng. 44,

17 (2000).
[10] Farkas, G., Mathematikai és Phisikai Lapok, IV, 7 (1895).
[11] Farkas, J., Mathematische und Naturwissenschaftliche Berichte aus Un-

garn XII, 282 (1895)



History and Education



Gyula Farkas and the Franz Joseph University from

Cluj/Kolozsvár

György GAAL

RO 400015 Cluj–Napoca
Str. Republicii 43
Romania

Abstract. This study in its first chapter presents the short history of higher education in
Cluj/Kolozsvár. The first attempt dates back to 1581, the second one to 1774-1775. Only the
third foundation that from 1872 created a long-lasting institute. This is the Franz Joseph
University, which had four faculties, one being that of Mathematical-Natural Sciences. The
beginning of this Faculty and its professors of Mathematics and Physics are presented in
the second chapter. One of the most outstanding professors was Gyula Farkas who taught
Theoretical Physics between 1887–1915. His activitiy as member of teaching staff is described
in the third chapter. It is mentioned his role as a dean and as rector of the university. Most
of the dates are taken from year-books of the university. The last chapter charecterizes Gyula
Farkas as a lecturer and educator, gives a list of his multiplied courses, enumerates his best
students. In the Appendix the title of all courses held by professor Farkas at Cluj/Kolozsvár
university are to be found.
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1 Higher Education in Cluj/Kolozsvár

The beginnings of higher education in Cluj/Kolozsvár dates back to the end
of the 16th century1. Then István Báthory, prince of Transylvania and king
of Poland decided to strengthen Catholicism in Transylvania, because most of
the country became protestant at that time. So in 1579 he sent twelve Jesuits
to Transylvania and ordered them to open a college in the neighbourhood of
Cluj/Kolozsvár, at the former Benedictine Abbey of Kolozsmonostor. In 1580
this college was moved inside the town into the Farkas Street. The wholly protes-
tant town protested against this decision. On the 12th May 1581 Báthory signed
a founding charter according to which he raised the college to the rank of uni-
versity. It could promote students to baccalaureat’s, magister’s and doctor’s
degree just similar to any foreign academy. Two years later the prince founded

1 Referring to the history of higher education in Transylvania and the history of Franz Joseph
University see: A kolozsvári M. K. Ferencz-József Tudomány-Egyetem. In: A felsőktatásügy
Magyarországon. Budapest, 1896. pp. 247–405.; Márki Sándor: A M. Kir. Ferencz József
Tudományegyetem története 1872–1922. Szeged, 1922.; Gaal György: Egyetem a Farkas
utcában. A kolozsvári Ferenc József Tudományegyetem előzményei, korszakai és vonzatai.
Kolozsvár, 2001.
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a students’ hostel, called seminary, housing 150 persons. For this a new three
story building was raised. In the golden age of this academy about 20–25 pro-
fessors were teaching more than 300 students. They were applying the famous
educational system and curriculum of Jesuits. The protestant population was
offended by the missionary activity of the Jesuits, so they were driven out from
the city first in 1603, then in 1605 their buildings being destroyed.

The second attempt to create a university at Cluj/Kolozsvár is linked to the
name of empress Maria-Theresia. Since 1690 Transylvania belonged to the Aus-
trian Empire, the Austrian rulers were in the same time princes of Transylvania.
Vienna supported Catholicism and disliked the habit of protestant churches to
send their best students to German, Dutch or even British academies from where
they often returned with "dangerous" ideas. So when the Jesuit Order was pro-
hibited by the Pope in 1773 the empress decided to found a university in their
buildings. Though the Protestants were invited to collaborate they were rather
suspicious, because they knew: the leading offices will be given to Catholics and
probably their students will get no passports any more to foreign universities.
Even so the empress founded a Faculty of Law in 1774 and a Faculty of Medicine
in 1775 where Protestants could get teaching jobs. Meanwhile the Faculties of
Philosophy and Divine Studies remained purely of catholic spirituality their
teachers being Piarist fathers. This new institute was called Royal Academic
Lyceum but mostly they mentioned it as a university. Its Faculty of Law func-
tioned till the 1848 revolution. Then after a long brake it was reestablished as
a Royal Academy of Law in 1863. The Faculty of Medicine in 1817 became a
separate Medical-Surgical Institute.

Following the 1867 compromise between Austria and Hungary as well the
integration of Transylvania into Hungary there was need to create a second
Hungarian university. At the beginning Bratislava/Pozsony and Cluj/Kolozsvár
were in competition for this institute. But the second town was in a much more
favourable position. Two faculties (Law, Medicine) were already existing. The
former Transylvanian government buildings became free and were more or less
suitable for a university. Then the Transylvanian Museum Society (founded in
1859) had rich scientific collections, a large library which were at the disposal
of the students.

The Bill of Foundation was brought into the Hungarian Parliament in April
1870 by József Eötvös, the famous novelist (the father of the physicist Loránd
Eötvös) then Minister of Education. After two years of waiting the next min-
ister, Tivadar Pauler asked the permission of the emperor/king Franz Joseph
for opening the Cluj/Kolozsvár University. This was given on the 29th of May
1872. So the preparations could begin. The Bill was discussed in the Hungar-
ian Parliament only in the autumn of that year. The newly founded university
had four faculties (Law, Medicine, Philosophy, Mathematical-Natural Sciences)
and 42 teaching chairs. There were about 120 applications for the chairs. The
opening ceremony and the installation of the first rector took place on the 10th
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of November 1872. It is worth mentioning that this new university had a sepa-
rate faculty for natural sciences. The Hungarians mostly followed the German
school-system, where – except the Tübingen University – at that time Natu-
ral Sciences were integrated into the Faculty of Philosophy. So it happened at
Budapest University, too. The Cluj/Kolozsvár Faculty of Mathematical-Natural
Sciences had eight teaching chairs. In autumn 1872 only seven were occupied:
Elementary Mathematics – Sámuel Brassai; Higher Mathematics – Lajos Mar-
tin; Experimental Physics – Antal Abt; Geology – Antal Koch; Chemistry –
Antal Fleischer; Botanics – Ágost Kanitz; Zoology – Géza Entz. For the eighth
chair, that of Mathematical or Theoretical Physics no candidate of correspond-
ing studies was found. The most venerable member of the whole teaching staff
was Sámuel Brassai, a polyhistor, expert in about ten sciences, who was imme-
diately elected as prorector. He was a full member of the Hungarian Academy
of Science. Martin was corresponding member of the Academy.

2 Mathematics and Physics departments and teachers

The vacant chair for Theoretical Physics was first occupied in 1874 by Mór
Réthy, a young man of science who just completed his studies at German uni-
versities. At the beginning he was extraordinary, from 1876 full professor. He
was a great scientist, at the age of 30 in 1878 he was already elected correspond-
ing member of the Academy. He also studied the heritage of the two Bolyais.
In 1884 he preferred to be transferred to the chair of Elementary Mathematics
which became vacant after the retirement of Brassai. Two years later he was
invited to the Technical University from Budapest. The department for Theo-
retical Physics in 1884 was occupied by Gyula Vályi, one of the first graduates
of the Cluj/Kolozsvár University, its privatdocent at that time. He worked there
for two years as extraordinary professor. Then he also preferred the Elementary
Mathematics, so he was promoted there in January 1887 as full professor. As
a result there was again vacancy at Theoretical Physics Department, but this
time there appeared a candidate who, though a great scientist, remained for
nearly three decades devoted to this chair and this university: Gyula Farkas.
From 1881 he was a privatdocent of Budapest University, on the 8th January
1887 he occupied the chair as extraordinary professor, on the 23rd of March
1888 he was promoted full professor.

At that time there were still eight departments at the Faculty, but some of
the professors were already belonging to the second generation. At Elementary
Mathematics professor Vályi was teaching, a great mathematician, a commen-
tator of Bolyai’s Appendix. In 1891 he entered the Academy as a corresponding
member. At Higher Mathematics still Martin was the professor, he became fa-
mous for his experiments in aeronautics. After his death, in 1897 the privatdo-
cent Lajos Schlesinger was promoted professor: a mathematician with German
studies and international fame. In 1902 he was elected corresponding member of
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Academy. He is considered the founder of the scientific library of the mathemati-
cal departments. The professor of Experimental Physics was Antal Abt since the
foundation. Not only a scientist but a good organizer and a popular lecturer.
He succeeded to create an Institute of Physics with all the necessary experi-
mental instruments. As well he put the bases of the Cluj/Kolozsvár school of
Physics. Just before his death (1902) he could install his institute into the new
central building of the university, where on the second floor there were about
13 rooms on his disposal, on the underground level some workshops were help-
ing the experimental activity. The next professor and head of the institute was
Károly Tangl, a former assistant of Loránd Eötvös, privatdocent of Budapest
University. Also a good methodologist and a man of science, who in 1908 was
elected corresponding member of the Academy. At this department at the very
beginning there was an assistant. At the end of the century Péter Pfeiffer helped
the professor, later he became first assistant, then privatdocent (1902), and be-
ginning with 1904 he founded the third department in this discipline, that of
Practical Physics.2

In the school-year 1886/1887 when Gyula Farkas entered the teaching staff
there were four privatdocents at the faculty, none of Physics, and six assistants,
from which Pfeiffer was a physicist. The faculty was lead by the dean: Antal
Abt. His deputy being Lajos Martin. At that time, according to the law each
rector or dean next year served as a deputy. The Faculty of Mathematical-
Natural Sciences was the smallest, with few teachers so they were quite often
elected deans. The students’ number was also small. From 456 only 30 were
studying at this faculty. While in the next decade the most popular disciplines
as Chemistry and Experimental Physics were taken up yearly by more then 50
students, Theoretical Physics had 12–15 students, being considered the most
difficult subject.

3 Gyula Farkas as member of the teaching staff

The Franz Joseph University from Cluj/Kolozsvár published its year-books in
three volumes: Acta (speeches and documents); Almanac (not a calendar, but
the presentation of the Senate, enumeration of all the teachers with their titles
and the institutes belonging to the university); Timetable (separately for each
semester, containing all the delivered courses and seminars, the teacher’s name,
the classroom as well as the home-address of the teachers).3 From these volumes

2 For short biographies see: Százhuszonöt éve nyílt meg a kolozsvári tudományegyetem. Em-
lékkönyv. Vol. I–II. Piliscsaba, 1997.

3 Acta Reg. Scient. Universitatis Claudiopolitanae Francisco-Iosephinae Anni
MDCCCLXXXVII–LXXXVIII. (1887–1918); A kolozsvári Ferencz-József Tudománye-
gyetem Almanachja MDCCCLXXXVI–LXXXVII-ről. (1886–1916); A kolozsvári Ferencz-
József Tudományegyetem Tanrendje az MDCCCLXXXVII–LXXXVIII. tanév I-ső felére.
(1887–1915). Between 1888 and 1910 Almanach and Tanrend were published in a single
volume.
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we can learn a lot about Gyula Farkas’ activity. It is easy to follow how his
appreciation grows, how he becomes more and more honorable, getting functions
and titles, then how he withdraws more and more from university life, addicting
himself only to science and teaching.

When Farkas arrived to Cluj/Kolozsvár university in 1887 he got the rank
of extraordinary professor. This meant that his scientific activity was not yet
worthy enough for his job. Otherwise he had all the duties of a full profes-
sor. Maybe his salary was smaller. All the extraordinary teachers after one or
two years’ activity were promoted, so it happened with Farkas. He was imme-
diately appointed as member of two institutes/committees connected with his
faculty. The university in those times prepared scientists. Those who wanted to
become schoolteachers had to listen some courses at the Teacher-training In-
stitute, where 15 professors from the faculties of Philosophy and Mathematics
delivered some lectures. Those who studied some years at this institute had to
be examined by the Schoolteachers’ Examining Committee to get a diploma.
During his whole university career Farkas was member of these two staffs. From
1898 till 1908 he was vice-president of the Examining Committee. Though he
did not deliver – except the very beginning of his activity – training lessons. This
kind of activity usually was done by the professor of Experimental Physics.

The "Department of Theoretical Physics" during this period meant one sin-
gle chair of a professor. He had no assistants or other substitute teachers. He
could propose the promotion of privatdocents4 in his field, but only Lipót Fejér
obtained this degree. It is interesting to see, that the Department of Theoret-
ical Physics is mostly connected to the two departments of mathematics not
to that of Experimental Physics. Farkas usually delivered 7–9 classes a week,
from which 2 were seminars. Only in the 1901/1902 school–year was founded
a Seminar in Mathematics. It had three directors (Vályi, Farkas, Schlesinger),
Schlesinger being its real manager. This meant a room with a library of special
issues. Beginning with 1903 a 4th year student, called tutor took care of this
Seminar. In 1905 Lipót Fejér became the tutor and the common assistant of
the three professors. Next year he was already promoted privatdocent, then in
1911 he became extraordinary professor of Higher Mathematics, but after some
months he left for Budapest. No other person is mentioned as tutor at this
Seminar.

Like other professors, Gyula Farkas was periodically elected dean of his fac-
ulty. It seems that he was a very accurate office-holder and could manage well
the small faculty. This is why he was seven times elected dean: 1889/90, 1892/93,
1893/94, 1896/97, 1897/98, 1898/99, 1902/903. Three times he was repeatedly

4 Privatdocents, according to German university-system, were promoted at the proposal of
two ordinary professors appreciating their whole scientific activity, by the decision of the
faculty’s council. Privatdocents were not employees of the university, but they could deliver
some facultative courses. In case of vacancy the privatdocents had a good chance to be
appointed.
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elected, probably no one wanted to overtake the office. According to the inter-
nal law each dean next school-year became deputy-dean. But because of reelec-
tions and other special cases this law could not always be respected. In such
way Farkas was deputy-dean in five school-years: 1890/91, 1894/95, 1899/900,
1901/902, 1903/904.

As dean he had four times very honourable tasks representing not only his
faculty but the whole university. In December 1892 the University of Padua
feasted the 300th anniversary of Galileo Galilei’s introduction as a professor.
Farkas presented the greetings of the Cluj/Kolozsvár University.5 There he got
the title of doctor honoris causa. On the 24th of June 1897 Sámuel Brassai
the retired professor, former rector of the university died. Not only the whole
town and university was mourning the great scientist but the whole country.
At the funeral Farkas delivered a speech. In the same year, on 6th July the
university promoted doctor honoris causa archduke József on the proposal of
Mathematical Faculty. So it became Farkas’ job to handle to the member of the
royal family the diploma delivering a short speech. In January 1903 the Franz
Joseph University organized a festivity commemorating the centenary of János
Bolyai’s birth. At this occasion a memorial plaque was put on his birth-house.
Farkas was one of the organizers, and he was the speaker of the unveiling. There
is a fifth occasion, too, where Farkas represented not so much his faculty but the
Academy of Science: it was the reburial of János Bolyai on the side of his father
in Marosvásárhely Calvinist graveyard in July 1911. Farkas was competent in
both occasions because he wrote a study on Bolyai’s theory.

The summit of his university career can be considered his election as a rector
for the 1907/908 school-year. Thus for one year he became the president of the
Senate, its members being the prorector, the four deans and the deputy-deans.
He had to preside at the meetings of the Senate and at festival occasions. He
had to deliver an inaugural address, then next September to give an account
of his activity. Finally he had to arrange all his speeches and other documents
of the school-year into a volume (Acta) of the year-books. We may state that
during his rectorship no special events happened.

Gyula Farkas delivered his inaugural speech on the 22nd of September 1907
in the aula of the university at the opening ceremony of the school-year.6 This
is a very long essay of 30 pages, about the development of Theoretical Physics
in the last two decades, since he has been appointed professor of this subject.
In the same time expresses his creed about the tasks of university teachers and
students. Before enumerating the new discoveries, theories in each field of his
discipline he points out: there was such a quick progress and huge development

5 Farkas Gyula: A Galilei-ünnep Páduában. Természettudományi Közlöny, vol. XXV. (1893)
pp. 196-201.

6 Published in Acta 1907-1908 and also as an extract: Beszéd, mellyel Farkas Gyula [. . . ]
a kolozsvári Magyar Királyi Ferencz József Tudományegyetem e[z]i[dei] rektora az 1907/8.
tanévet megnyitotta. Kolozsvár, 1907.
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that he had to study all the time, to understand the novelties, and then re-
peatedly rewrite his courses. In the end he confesses: he can’t understand those
students who after graduating their studies, consider that they had acquired all
the necessary knowledge. The university just enables its students to study and to
understand the problems of a discipline. They must continue to study all their
life, they must deepen their knowledge. Another occasion to deliver a speech
was on the 29th of May 1908, which was the anniversary of the foundation.7

Each year on this day the best competition essays were awarded. The winners
of some scholarships were announced. Rector Farkas in his opening speech men-
tioned that it is the 35th occasion to give the awards and showed what are the
funds which grant the necessary sums.

His giving account speech was delivered on the 27th of September 1908,
before the opening address of the new rector.8 It is a very well articulated
text with 18 sub-titles and 41 appendices. These are mostly documents and
statistics. We just point out that in the first semester there were 47 ordinary, 5
extraordinary professors, 43 privatdocents in the teaching staff, from the 2404
students only 164 were listening courses at the Faculty of Mathematical and
Natural Sciences. Two important new buildings were nearly completed: that of
the Zoological Institute (Mikó-Garden) and of the University Library. Both of
them were inaugurated with the participation of the Minister of Education on
the 18-19th May 1909, when Farkas was the prorector of the university. It is
worth to mention that in the period 1898-1908 he was member of the library
board.

It is often mentioned9 that Gyula Farkas was attracting the best mathemati-
cians to the Cluj/Kolozsvár university. He even wrote letters inviting them. So
during the last five years of his activity his colleagues were Lajos Schlesinger,
Lipót Fejér, Alfred Haar, Frigyes Riesz who later on founded the world-famous
Hungarian School for Mathematics. Their common Seminar was probably the
birthplace of this scientific school. They all were members of the famous Circolo
Matematico from Palermo.

Most of the professors in those times retired at the age of 70. Gyula Farkas
suffered from eye-disease. He considered that he can’t carry out his duties

7 Acta 1907/8. Fasciculus II. Beszédek, amelyek a kolozsvári M. K. Ferencz József Tudomány-
egyetem alapítása XXXVI. évfordulójának ünnepén 1908. május hó 29-én tartattak [. . . ].
Kolozsvár, 1908.

8 Acta 1908/9. Fasciculus I. Beszédek, amelyek a kolozsvári M. K. Ferencz József Tudomány-
egyetem 1908/9. tanévi rectora és tanácsa beiktatása és a tanév megnyitása alkalmából 1908.
évi szeptember hó 27-én tartattak. Kolozsvár, 1908. 1-144. (Rectori beszámoló beszéd. Mon-
dotta [. . . ] Farkas Gyula mint az egyetem kormányáról lelépő 1907/8. tanévi rector 1-22 +
Mellékletek 22-144.)

9 E.g. Gábos Zoltán: “A természet a matematika nyelvén szól hozzánk ” Természet Világa, Vol.
128. (1997) pp. 290-293.; Prékopa András: Farkas Gyula élete és munkásságának jelentősége
az optimalizálás elméletében. In: Farkas Gyula élete és munkássága. Budapest, 2003. pp. 9–
26.
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properly. Therefore he resigned at the age of 68, after 28 years of teaching at
Cluj/Kolozsvár. During his last school-year being mostly on sick-leave profes-
sors Tangl and Haar held his courses. The decision on his retirement is dated on
the 23rd of October 1915. The rector of 1915/16 school-year, professor Károly
Tangl commemorates him with these words: "During the first semester dr. Gyula
Farkas, professor of Mathematical Physics at our university for 28 years has re-
tired. It was not easy to part with this beloved teacher of our university, who
during his long activity won our appreciation and respect. His courses will re-
main an example for accuracy and clearness. He was able to make clear the
most difficult problems, he avoided any extra word, so his lectures were classical
examples for conciseness and preciseness. His valuable studies in Mechanics and
Electrodynamics will remain a source of esteem for our university. We highly
esteemed his love of fair play which is reflected in all his deeds, and was espe-
cially precious in managing our university. He took leave of the university, but it
may give us consolation that he continues to work for Hungarian science, would
God let him for many years!"10 At his retirement Farkas was awarded with the
middle-cross of the Franz Joseph-order.

4 Gyula Farkas as lecturer and educator

From the official Timetable of the university we know the title of all his courses.
From these titles a physicist could probably draw some conclusions upon the
interests of professor Farkas. It was up to him to decide the number of weekly
classes between 7 and 10, as well the number of courses and seminars. In the
first school-years he proposed two courses (3+2 classes) and a seminar (2 classes)
and sometimes a public free lesson (1 class) which was ment for all the students.
Beginning with the 1890ies he delivered a basic course of 5 classes (each working
day at noon) and had two practical classes connected with the course (usually
on Wednesday afternoon). Sometimes in one of the semesters he had a second
course of 1 or 2 classes for beginners. In this period all his lessons were held
in the old Jesuit building at classroom no. X. In the 20th century in the new
building he always delivered his lessons and seminars in the 2nd classroom for
mathematics (second floor, north wing, just opposite to the main stairs). From
this time up to the end of his activity each semester he had two courses: one of
4 classes for advanced students, one of 3 classes for beginners and a seminar of
2 classes without a special title (Seminar in Mathematical Physics). His courses
were always held at noon. The Study of Vectors and Dynamics were his two
basic courses which nearly each year appear in the timetable.

One of his best pupils, his successor Rudolf Ortvay in his commemorating
speech delivered in the meeting of the Hungarian Academy of Science in 1932
characterizes in this way the lecturer Farkas: "I have to appreciate his courses,

10 Acta 1916/17. Fasciculus I. p. 19.



104 György Gaal

which he carefully prepared for lithography. His courses comprehended the whole
area of Theoretical Physics, but their scheme was different from the usual one.
He put a stress on the accurate and correct explanation of the fundamental
concepts. He discussed only such phenomena which were already settled enough
for teaching. His style was so concise that not a word could be omitted. Therefore
these texts are not easy to understand and less suitable for beginners as an
introduction into the science. But those whose mind is already cultivated and
who appreciate the general view and the rigour of science as well the logical
structure of a discipline can learn a lot or even find delight in them. But these
features and the lack of any illustration, descriptiveness make easy to understand
why these courses were not too popular."11

In professor Ortvay’s bibliography of Gyula Farkas one printed and five
multiplied courses are enumerated. Professor Zoltán Gábos knows about eleven
titles, some of them have three editions. He does not refer to his sources but men-
tions that he has not seen them all. We checked the two great Cluj/Kolozsvár
libraries (University, Academy) as well the Library of the Faculty of Mathemat-
ics and Computer Science and compared the volumes with the titles mentioned
in the yearly bibliography of the teachers published in the Acta-volumes and
with the list of Zoltán Gábos.12 In Acta 1891/92 three multiplied courses are
mentioned without any title, Gábos enumerates four courses from 1889-1891.
None of them is available in our libraries. In 1901 there was published as a
sequence of extracts the single printed course: Vector-tan és az egyszerű inae-
quatiok tana. – Theory of vectors and of simple inequations (Kolozsvár, 1901.
pp. 1–165.). In Acta 1907/908 again we can read about the supervision of the
text of three courses before lithography. The titles are: A mechanika alaptanai
– Fundamentals of Mechanics (missing from libraries); Az energia átalakulásai
– Energy transformations (Kiadják Thomay János, Somogyi István. 1906/7 I.
félév. pp.1–114.); Az energia terjedése – Energy propagation (Kiadja Bendessy
György. Leírta Nagy Imre. 1906/7 II. félév. pp. 1–227). Acta 1908/909 again
enumerates two titles: Különös mechanika – Special Mechanics - its real title is
Analytikus mechanika – Analytical Mechanics (1907-8 I. félév. pp. 1–208); Erő-
tan – Force theory (missing). At last in Acta 1914/15 we find six titles, even the
number of printed sheets is mentioned: Vektortan – Vector theory (24 sheets) -
missing; A mechanika alaptanai – Fundamentals of Mechanics [27 sheets] (1913-
14. tanév II. felében. pp. 1–192.); Analytikus mechanika – Analytical Mechanics
[27 sheets] (1913-14. tanév I. felében. pp. 1–214.) ; Erőtan – Force theory [38
sheets] (1913-14. tanév II. felében. pp. 1–308.); Az energia átalakulásai – Energy
transformations [33 sheets] (1912-13. I. félév. pp. 1–267.); Az energia terjedése

11 Farkas Gyula rendes tag emlékezete. Írta Ortvay Rudolf l[evelező] tag. Felolvasta a Magyar
Tudományos Akadémiának 1932. évi december hó 19-én tartott összes ülésén. Budapest,
1933. pp. 31-32.

12 See: Gábos Zoltán’s above quoted article.
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– Energy propagation (29 sheets) - missing. We may state that all the courses
published in the 20th century are available in one of their editions.

We know very little about the students and disciples of Gyula Farkas. Very
few students took up his courses, mostly mathematicians and physicists. Only
archive records may complete the list of those who were examined by him.
The Acta volumes preserved us the names of those students who compiled a
prize-winner paper in his subject. Each year each professor could propose some
subjects for students. The author of the papers had a code-word, his real name
was made public only if he won a prize. In 1888-1890 twice Péter Szabó won
prizes, he later obtained the doctor’s degree and became professor at Budapest,
he was a Bolyai-researcher. In 1893-1895 Pongrácz Kacsóh was a prize-winner.
He also took the doctor’s degree, but became famous as a composer. In 1895/96
two papers were mentioned in his field, the authors are: Emil Korbuly and
Sándor Nagy. A year later György Kaufmann is the prize-winner. After a long
brake there is a future physicist who got the prize for Experimental Physics
in 1910/11, but the proposal was made by Farkas: he is Zoltán Gyulai who
soon would become the assistant of professor Tangl, then ordinary professor of
this university. In 1911-1913 twice Vasile Lupan (Lupan Vazul) was awarded for
Theoretical Physics papers.

One of his best students was Rudolf Ortvay, who after graduating became
assistant (1909-1912) to professor Tangl. Then he left for Germany to specialize
himself. He got the privatdocent’s degree in 1915 in Theoretical Physics at
Cluj/Kolozsvár. Probably one of the proposers was Farkas. In such a way Gyula
Farkas left a successor when he retired. On the 16th of August 1916 Rudolf
Ortvay was appointed extraordinary professor of Theoretical Physics. Farkas
immediately moved to Budapest.13

13 Farkas very often changed his home: 1887 – Felsőszén u. 27., 1888 – Belközép u. 9., 1890 –
Belszén u. 13., 1891 – Főtér 13, 2nd floor, 1894 – Belközép u. 22., 1896 – Külmagyar u. 7.,
1900 – Főtér 26., 1902 – Szentegyház u. 23., 1904 – Karolina tér 3., 1905 – Sétatér u. 4. 1st
floor, 1906 – Szentegyház u. 36., 1908 – Szentegyház u. 31. 2nd floor. His Budapest-address:
I. Enyedi u. 11.
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5 Appendix
The List of Courses Held by Professor Gyula Farkas

1887/88 – I.
Az erőfüggvények elmélete (potenciál elmélet) és alkalmazása – Theory of Potentials and

application. 3 h/week.
A mechanika elemei – Basis of Mechanics. 2 h/week.
*Tanárképző gyakorlatok – Practical teacher training. 2 h/week.

1887/88 – II.
A potenciál elmélet alkalmazása – Application of the Theory of Potentials. 3 h/week.
Mechanika elemei – Basis of Mechanics. 2 h/week.
*A fizika abszolút mértékei. (Publicum.) – Absolute measures of Physics. 1 h/week.
Tanárképző gyakorlatok – Practical teacher training. 2 h/week.

1888/9 – I.
Energetika (A hő, elektromosság és vegyfolyamatok mechanikai elmélete) – Energetics.

5 h/week.
*Az előadásokkal kapcsolatos gyakorlatok –Practical works. 2 h/week.

1888/9 – II.
Az energia terjedési tüneményeinek elmélete (Rugalmassági tünemények, a hang-, fényter-

jedés, hővezetés, elektromos áramok, elektromos és mágneses indukció elmélete) – Theory of
propagation of energy. 5 h/week.

Az előadásokkal kapcsolatos gyakorlatok. Practical works. 2 h/week.
1889/90 – I.

Analitikus mechanika – Analytical Mechanics. 5 h/week.
*Általános függvénytan az alkalmazásban előforduló nevezetesebb függvényalakok ismer-

tetésével – General Theory of Functions with main function forms in applications. 2 h/week.
*Az előadásokkal kapcsolatos gyakorlatok – Practical works. 2 h/week.

1889/90 – II.
Potenciális elmélet és alkalmazásai – Application of the Theory of Potentials. 5 h/week.
*Az előadásokkal kapcsolatos gyakorlatok – Practical works. 2 h/week.

1890/91 – I.
Energetika – Energetics. 5 h/week.
*Az előadásokkal kapcsolatos gyakorlatok – Practical works. 2 h/week.

1890/91 – II.
Az energia terjedési tüneményei – Propagation of energy. 5 h/week.
*A fény elektromágneses elmélete. Publikum – Theory of Electromagnetism. 1 h/week.
*Az előadásokkal kapcsolatos gyakorlatok Practical works. 2 h/week.

1891/92 – I.
Analitikus mechanika – Analytical mechanics. 5 h/week.
*Az előadásokkal kapcsolatos gyakorlatok – Practical works. 2 h/week.

1891/92 – II.
Potenciális elmélet és alkalmazásai – Potential Theory and applications. 5 h/week.
*Az előadásokkal kapcsolatos gyakorlatok – Practical works. 2 h/week.

1892/93 – I.
Energetika Energetics. 5 h/week.
*A hőterjedés elmélete. (Publicum.) – Theory of heat propagation 1 h/week.
*Az előadásokkal kapcsolatos gyakorlatok – Practical works. 2 h/week.

1892/93 – II.
Az energia terjedési tüneményei – Propagation of energy. 5 h/week.
Az analitikus mechanika alaptanai (kezdőknek) – Fundamentals of Analytical Mechanics

(for beginners). 2 h/week.
*Az előadással kapcsolatos gyakorlatok – Practical works. 2 h/week.
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1893/94 – I.
Analitikus mechanika – Analytical Mechanics. 5 h/week.
*Az előadással kapcsolatos gyakorlatok – Practical works. 2 h/week.

1893/94 – II.
Erőfüggvények – Force functions. 5 h/week.
Fizikai mérőeszközök elmélete. (Publicum.) – Theory of physical measure devices 1 h/week.
*Az előadásokkal kapcsolatos gyakorlatok – Practical works. 2 h/week.

1894/95 – I.
Energetika – Energetics. 5 h/week.
*Az előadásokkal kapcsolatos gyakorlatok – Practical works. 2 h/week.

1894/95 – II.
Az energia terjedési tüneményei – Energy propagation. 5 h/week.
Mechanika kezdőknek –Mechanics for beginners. 2 h/week.
*Az előadásokkal kapcsolatos gyakorlatok – Practical works. 2 h/week.

1895/96 – I.
Mozgástan – Cynematics. 5 h/week.
Matematikai bevezetés az elméleti fizikába – Mathematical introduction to Theoretical

Physics. 3 h/week.
Mozgástani gyakorlatok – Practical works in Cynematics. 2 h/week.

1895/96 – II.
Erőtan – Force theory. 5 h/week.
A mennyiségtani természettan művelése hazánkban. (Publicum) – Mathematical Physics

in our country. 1 h/week.
*Erőtani gyakorlatok – Force theory practice. 2 h/week.

1896/97 – I.
Az energia alakváltozásai – Energy form changes. 5 h/week.
Matematikai bevezetés az elméleti fizikába – Mathematical introduction to Theoretical

Physics. 3 h/week.
*Energetikai gyakorlatok – Practical works in Energetics. 2 h/week.

1896/97 – II.
Energia terjedési tüneményei – Energy propagations. 5 h/week.
Matematikai bevezetés az elméleti fizikába – Mathematical introduction to Theoretical

Physics. 3 h/week.
*Elméleti fizikai gyakorlatok – Practical works in Theoretical Physics. 2 h/week.

1897/98 – I.
Általános mozgástan –General Cynematics. 5 h/week.
Matematikai bevezetés az elméleti fizikába – Mathematical introduction to Theoretical

Physics. 3 h/week.
*Mozgástani gyakorlatok –Practical works in Cynematics. 2 h/week.

1897/98 – II.
Erőtan – Force theory. 5 h/week.
*Erőtani gyakorlatok – Practical works in Force theory. 2 h/week.

1898/99 – I.
Az energia átalakulásai – Energy transformations. 4 h/week.
Vektor-tan. (Matematikai bevezetés az elméleti fizikába) – Vector theory (Mathematical

introduction to Theoretical Physics). 3 h/week.
*Energetikai gyakorlatok – Practical works in Energetics. 2 h/week.

1898/99 – II.
Az energia terjedése – Energy propagation. 4 h/week.
Az analitikus mechanika alaptanai – Fundamentals of Analytical Mechanics. 3 h/week.
Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1899/1900 – I.
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A mechanikai alapelvek némely alkalmazásai – Some applications of principles of Mecha-
nics. 4 h/week.

Vektor-tan – Vector theory. 3 h/week.
*Mennyiségtani fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1899/1900 – II.
Erőtan –Force theory. 4 óra.
A mechanika alaptanai – Fundamentals of Mechanics. 3 h/week.
Matematikai fizikai szeminárium. (Tárgy: erőtan.) – Seminar in mathematical physics.

(Subject: Force theory). 2 h/week.
1900/1901 – I.

Az energia átalakulásai – Energy transformations. 4 h/week.
Vektor-tan –Vector theory. 3 h/week.
Mennyiségtani fizikai szeminárium. (Tárgya: energetika.) – Seminar in Mathematical Phy-

sics. (Subject: Energetics). 2 h/week.
1900/1901 – II.

Az energia kérdése – Energy problems. 4 h/week.
Az elméleti mechanika alaptanai –Fundamentals of Theoretical Mechanics. 3 h/week.
Matematikai fizikai szeminárium –Seminar in Mathematical Physics. 2 h/week.

1901/1902 – I.
Különös mechanika –Special Mechanics. 4 h/week.
Vektor-tan – Vector theory. 3 h/week.
Matematikai fizikai szeminárium –Seminar in Mathematical Physics. 2 h/week.

1901/1902 – II.
Erőtan –Force theory. 4 h/week.
A mechanika alaptanai –Fundamentals of Mechanics. 3 h/week.
Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1902/1903 – I.
Vektor-tan –Vector theory. 3 h/week.
Az energia átalakulásai – Energy transformations. 4 h/week.
Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1902/1903 – II.
Az energia terjedése – Energy propagation. 4 h/week.
A mechanika alaptanai – Fundamentals of mechanics. 3 óra.
Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1903/1904 – I.
Különös mechanika – Special Mechanics. 4 h/week.
Vektor-tan – Vector theory. 3 h/week.
Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1903/1904 – II.
Erőtan – Force theory. 4 h/week.
Az analitikus mechanika alaptanai – Fundamentals of Analytical Mechanics. 3 h/week.
Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1904/1905 – I.
Vektor-tan – Vector theory. 3 h/week.
Az energia átalakulásai – Energy transformations. 4 h/week.
Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1904/1905 – II.
Az energia terjedése – Energy propagation. 4 h/week.
A mechanika alaptanai – Fundamentals of Mechanics. 3. h/week.
Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1905/1906 – I.
Különös mechanika – Special Mechanics. 4 h/week.
Vektor-tan – Vector theory. 3 h/week.
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Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.
1905/1906 – II.

Erőtan – Force theory. 4 h/week.
Az analitikus mechanika alaptanai – Fundamentals of Analytical Mechanics. 3 h/week.
*Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1906/1907 – I.
Vektor-tan – Vector theory. 3 h/week.
Az energia átalakulásai – Energy transformations. 4 h/week.
Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1906/1907 – II.
Az energia terjedése – Energy propagation. 4 h/week.
A mechanika alaptanai – Fundemantals of Mechanics. 3 h/week.
Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1907/1908 – I.
Analitikus mechanika – Analytical Mechanics. 4 h/week.
Vektor-tan – Vector theory. 3 h/week.
Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1907/1908 – II.
Erőtan – Force theory. 4 h/week.
Mechanika alaptanai – Fundamentals of Mechanics. 3 h/week.
*Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1908/1909 – I.
Vektor-tan – Vector theory. 3 h/week.
Az energia átalakulásai – Energy transformations. 4 h/week.
Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1908/1909 – II.
Az energia terjedése – Energy propagation. 4 h/week.
Mechanika alaptanai – Fundamentals of Mechanics. 3 h/week.
Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1909/1910 – I.
Analitikus mechanika – Analytical Mechanics. 4 h/week.
Vektor-tan – Vector theory. 3 h/week.
Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1909/1910 – II.
Erőtan – Force theory. 4 h/week.
Mechanika alaptanai – Fundamentals of Mechanics. 3. h/week.
Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1910/11 – I.
Vektor-tan – Vector theory. 3 h/week.
Az energia átalakulásai – Energy transformations. 4 h/week.
Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1910/11 – II.
Az energia terjedése – Energy propagation. 4 h/week.
Mechanika alaptanai – Fundamentals of Mechanics. 3 h/week.
Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1911/12 – I.
Analitikus mechanika – Analytical Mechanics. 4 h/week.
Vektor-tan – Vector theory. 3 h/week.
Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1911/12. – II.
Erőtan – Force theory. 4 h/week.
Mechanika alaptanai – Fundamentals of Mechanics. 3 h/week.
Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.
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1912/13. – I.
Vektor-tan – Vector theory. 3 h/week.
Az energia átalakulásai – Energy transformations. 4 h/week.
*Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1912/13. – II.
Az energia terjedése – Energy propagation. 4 h/week.
Mechanika alaptanai – Fundamentals of Mechanics. 3 h/week.
Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1913/14. – I.
Analitikus mechanika –Analytical Mechanics. 4 h/week.
Vektor-tan – Vector theory. 3 h/week.
Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1913/14. – II.
Erőtan – Force theory. 4 h/week.
A mechanika alaptanai – Fundamentals of Mechanics. 3 h/week.
Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1914/15. – I.
Vektor-tan – Vector theory. 3 h/week.
Energia átalakulásai – Energy transformations. 3 h/week.
Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

1914/15. – II.
Mechanika – Mechanics. 3 h/week.
Optika – Optics. 3 h/week.
Matematikai fizikai szeminárium – Seminar in Mathematical Physics. 2 h/week.

———
* Seminars and courses exempt from charges.
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1 Prologue

At the centurial commemoration of János Bolyai’s birth in Cluj (Kolozsvár)
the board of Hungarian Academy of Sciences announced the foundation of the
Bolyai prize, intending to award it in five-year periods to a mathematician with
outstanding achievements during the previous years. The person who first was
honored with this prize was the French mathematician, Henri Poincaré. With
respect to this event Jenő Gergely, who once had been the disciple of Frigyes
Riesz, then professor at the Bolyai University, related the following story.

Many prominent representatives of the Hungarian scientific life waited in
excitement the arrival to the Eastern Railway Station in Budapest of the Paris
express. One of the greatest scientists of those times was coming to Budapest
to receive the Bolyai prize. After the welcoming speech Poincaré asked: “Where
is Feujé”, he asked. The Hungarians looked at each other in confusion. Who is
Feujé? Suddenly they realized that Poincaré was talking about Lipót Fejér, a
professor at the Cluj (Kolozsvár) university, who, despite of his young age (he
was only 25 years old at that time), was one of the most famous Hungarian
mathematicians of those times. His results related to the trigonometric series
had been published in Comptes Rendus (Paris) when he had been only twenty
years old. Fejér’s summation method has proved to be the starting point of
the renaissance of Fourier’s series. Fejér had started simultaneously his research
enriching significantly the knowledge of the classical polynomials. He deduced
a new and probably the simplest proof of Weierstrass’ approximation theorem,
and started his examinations on Chebyshev’s polynomialss; these examinations
had a great echo. Since then the main periodicals published regularly important
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results achieved by Fejér. Thus we can easily understand Poincaré’s wish to
meet the young scientist during his short visit to Hungary. What was to be
done? Thanks to an efficient mediation a train consisting only of an engine and
one carriage started to rush within a few hours from Cluj to Budapest...

Whether it is true or not, the story is interesting, also because it reflects
the condition of mathematics in Cluj at that time. Lipót Fejér was not the only
mathematician, whose activity had a great influence on the scientific develop-
ment in the 20th century, and who was working for a while at the university
of Cluj. It is remarkable that it was the university of Cluj, not that one in
Budapest among Hungarian universities that first became an important cen-
tre of mathematics. During the decades preceding to the world war the school
of mathematics in Cluj became one of the best centres of mathematics in the
world. Its representatives gained imperishable merits for themselves and for the
Hungarian scientific life. It is not probable that a week day passes unless men-
tioning somewhere in the world the name of Gyula Farkas, Lipót Fejér, Alfréd
Haar or Frigyes Riesz.

How did mathematics in Cluj reach so high at the beginning of the 20th
century? What personal conditions, social and economic facts, strategies aiming
the scientific life and the development of education contributed to this devel-
opment? (The answer to these questions could be helpful when handling the
present problems of the Hungarian minority in Transylvania.)

2 The first decades

In 1872, when the university of Cluj was established the situation of mathematics
wasn’t promising at all. Apart from the activity of the Bolyais the mathematics
literature of that time was quite poor here. The main event worthy to mention
is related to Sámuel Brassai, who translated into Hungarian the book of Euclid
called Elements.

When the departments of mathematics had to be organised within the newly
established university of Cluj, only Brassai could have come into consideration
among the Transylvanians. At that time he was the director of the Transylvanian
Museum Society and the guard of the Museum of Natural Sciences. His scientific
reputation and prestige was so high in Cluj that the articles on the university
repeatedly mentioned him as a nominee. He competed in 1870 for a teaching
position at the university in Pest, and expected to be nominated as a professor
of the Sanskrit language. As far as we know, the minister of education, József
Eötvös asked Brassai if he was wanting to direct a department at the new
university in Cluj. He was free to choose, but he indicated several domains, and
this caused later problems to the new minister of education, Trefort securing the
nominations, as “it was hard to agree on the department to nominate him at”.
Brassai proposed to choose between the philosophy, botany, pedagogy, history
of culture, linguistics and mathematics. Finally he was nominated as a full
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professor at the Department of Elementary Mathematics. According to the book
of György Boros entitled The Life of dr. Sámuel Brassai he himself was much
surprised by this nomination..

Sámuel Brassai (1800–1897) was born in Colţeşti (Torockószentgyörgy).
He graduated his studies in philosophy at the Unitarian College in Cluj when
he was twenty-one years old. (He didn’t study at any university.) He was an
educator for a few years, and then in 1837 he became teacher of geography
and history at the Unitarian College in Cluj, later he taught mathematics and
natural sciences. He peregrinated to Germany in 1841, and returned to the
college as director. After the 1848 Hungarian War of Independence he worked
as a teacher in Pest, then again in Cluj.

The translation of Elements by Brassai still can be found in the mathemat-
ics library in Cluj. From his many coursebooks only the Algebraical Exercises
published in 1883 in Budapest can be found in Cluj. One who is interested in
the development of the mathematical terminology can learn a lot from these
works. Unfortunately he didn’t recognize the importance of the epoch-making
discovery of János Bolyai, and his public statements impeded its recognition
in Hungary. The other appointed full professor of mathematics was Lajos Mar-
tin at the Department of Higher Mathematics, who became the corresponding
member of the Hungarian Academy of Sciences as an engineer in 1859.

Lajos Martin (1827–1897) was born in Budapest, he studied at the Tech-
nical University of Budapest and at the Genie Academy. He was an officer of the
engineer corps until 1859, then he became the chief engineer of Buda in 1861,
and was a high-school teacher between 1863–68. As a professor, due to the as-
signment of the minister of education he wrote coursebooks in mathematics,
geometry and descriptive geometry. In 1868 he was the warden of the telegraph
office of Pest, in 1869 the acting director of the telegraph office of Debrecen.
From there he was nominated in 1871 as a director of the telegraph office of
Cluj. Since 1872 until his death he was a full professor at the Higher Mathe-
matics Department of the Cluj university. His scientific activity focused on the
issues of aviation: he was the Hungarian pioneer of aviation. His main works: A
vízszintes szélkerék, Budapest, 1874 (The Horizontal Wind Wheel), Az erőmû-
tani csavarfelületek, Budapest, 1874 (The Power Station Helicoidal Surfaces), A
csillagászat újabbkori haladásáról, Cluj, 1877 (Recent Developments in Astron-
omy), Variátio Számítás, Cluj, 1879 (Calculus of Variations), A madárrepülés
általános elmélete, Cluj, 1890 (A General Theory of Bird Flight). The first two
works are bound in a single volume and the Calculus of Variations still can be
found in the mathematics library in Cluj.

In the strict sense of the word neither Brassai, nor Martin were mathemati-
cians. None of them performed mathematical research; mathematics wasn’t in
the centre of their interests. However both were interested in applied mathema-
tical issues: the former confirmed this interest by his works in astronomy, the
later by his works in aviation technology. The proper person for directing the
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third mathematics department, the Department of Mathematical Physics (Men-
nyiségtani Fizika) was found only in 1874, this person being the young Mór
Réthy. He was one of the extremely talented young mathematicians, who ac-
quired thorough knowledge and doctoral degree at famous German universities
and who started to work at the university of Cluj. They gave a new stimulus to
the local scientific life. Mór Réthy (1848–1925) was born in Nagykőrös, and
studied at the universities of Vienna, Goettingen and Heidelberg. Taking his
doctorate in Heidelberg in 1874, he became in that year extraordinary professor
at the university of Cluj, after two years a full professor at the Department
of Mathematical Physics. He was the head of the Department of Elementary
Mathematics between 1884–1886. After that he moved to the Technical Uni-
versity in Budapest. He was one of the first Hungarian professors in theoretical
physics. His results are well known abroad too, they relate to the shape of the
incompressible jet. He performed significant research related to the principles
of mechanics and the Ostwald rule in chemistry. His results relating to the in-
finitely equal areas examined by Farkas Bolyai are outstandingly valuable in
the field of mathematics. It was Mór Réthy together with Gyula Kőnig who
edited the first volume of the second edition of Farkas Bolyai’s main work, the
Tentamen.

In 1874 he presented a lecture in Cluj on Bolyai’s geometry; this was the
first lecture on this issue in Hungary. (We note here that the excellent Austrian
mathematician, Johannes Frischauf already had course-like lectures in the aca-
demic year of 1871–72 at the university of Graz on the non-Euclidean geometry.
These lectures comprised the first detailed overview of János Bolyai’s brilliant
work, the Appendix. The lectures were published in Leipzig in 1872 under the
title Absolute Geometrie nach Johann Bolyai. This booklet was the only treaty
for a long time, which constructed the absolute geometry using the elemen-
tary method, relying on the Appendix. However the book doesn’t mention the
construction problems that János Bolyai solved in the hyperbolic space.)

Réthy tried to ease the study of the Appendix by ensuring the renaming
of several definitions (i.e. parallelism, paracycle, parasphere, hypercycle and
hypersphere as interpreted by Bolyai), which were easier to understand than the
original ones. Réthy built up individually the Bolyai trigonometry making use
of the fact that the theorems of the Euclidean geometry apply for the infinitely
small part of space in the absolute geometry, and relying on the fact that the
trigonometry of the surfaces with a constant curvature is independent from the
fifth Euclidean postulate. His other important achievement is that he was the
first to appreciate and detail the constructions to be found in the Appendix.
Réthy propagated the idea that the national mathematical research should rely
on the results of the Bolyais. He said that “in our country, where besides the
two Bolyais there weren’t important mathematicians, all further scientific efforts
should depart from the activity of these men.”
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The university had to face a lot of difficulties at the beginning. The teaching
took place in several, mainly impractical buildings. The departments and the
university library were in a deplorable situation. It is true that the Transylvanian
Museum Society rented to the university for 50 years, at a price of five hundred
forints a year all its collections, including its library of 30,000 volumes, but
the special libraries serving education and scientific research were still mising.
Compared to the needs the state could support the university at the beginning
just with small amounts. The population of Cluj itself “was less enthusiastic, and
endowed only four foundations on the behalf of the youth.” The professors found
themselves proper apartments only after long searching, and the students didn’t
find enough entertaiment in the small town, therefore “they found compensation
in noisy amusements”.

Considering these preliminaries no wonder that mathematics in Cluj had to
make up the gaps for a couple of years after the establishment of the univer-
sity. The difficulties were increased by the fact that in those years the whole
Hungarian mathematics struggled with similar problems. The most competent
persons knew well that the university could fulfil its real function if besides ed-
ucation high-level scientific research was also carried out within it. Despite this,
it seems that during the first years there was a misunderstanding among the
professors concerning the aims and forms of university activities. In the history
and statistics of the Franz Joseph University of Cluj published in 1896 it is
mentioned that the rector, Sándor Imre in 1878 raised objections against the
lack of scientific research, and emphasized that the university wasn’t a school,
but a scientific institution, and one should not confuse these two. In the same
time “considering that the main and most important task is to introduce and
disseminate sciences, he urged firmly the reform of high-schools, so that young
people should come properly trained to the university.” When the new rector
was introduced next year, the old one referred with pride to the competition
ceremony held twice in the last year and to the signs of scientific diligence and
independence in students, respectively to the work of the teaching staff, well-
known abroad too, which contributed to the development of the national and
universal scientific life. Whereas Sámuel Brassai, the new rector questioned on
the importance that professors should not endeavour to new results in science
alone, but should lead their disciples too in this direction. “It is not the first
and main task of a university teacher to discover something new, and the de-
mands for such research is useless, illegitimate and unreasonable. It is even more
useless, illegitimate and unreasonable in relation to students.” That is why he
objected to prizes, as they being “the embodiments of the repeatedly refused de-
mand, that the student should be directed towards new discoveries and scientific
development.”

Fortunately this idea wasn’t prevalent within the university in the following
years. The university paid more and more attention to the thorough training of
the most talented students and to their introduction into research. The research
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competitions organised for students became more and more popular, and the
curriculum reflected more and more the actual issues in science. The further
training of the best students was supported through scholarships. In the mean-
time the management of the university devoted great care to assign professors,
who acquired doctoral degrees at foreign universities, and had had scientific
achievements there. These professors supported the development of talented
students through several special courses that probed deeply into fashionable
disciplines and comprised the often basic results of the lecturer. In Cluj the
research focused mainly on number theory, the theory of differential equation,
function theory, vector algebra, analysis, quaternion and elliptic function the-
ory and the Bolyai geometry. The effectiveness and high scientific level is shown
not only by the few published monographs, the countless lithographed notes,
but also the increasing number of treaties published in domestic and foreign
periodicals.

The state allows more and more funds for the university: during the first
15 years the costs increased from 160,000 forints to 279,000 forints. The press
and the parliament appreciated the scientific activity of the professors and of
the university. Despite all these efforts the number of students in mathematics
decreased from 67 to 23 in the 1876-1886 period. The management of the uni-
versity thought that its reason was that the eminent candidates waited in vain
to be nominated as professors. Another reason could be extremely high prices
in the town.

3 New impulses

At the beginning of the last decade of the 19th century important changes
occurred in the university life. By that time the number of departments increased
to 51, the members of the teaching staff to 68, while the number of the scientific
employees comprising the teaching assistants and trainees to 119. During the
first 25 years the number of students increased from 233 to 702. Similarly the
number of mathematicians also increased.

In order to solve the building problems, the architect from Cluj, Károly
Reményik started to build up the main building in 1893 according to the plans
of Károly Meixner. Thus the rector, Lajos Martin, who had spoken about the
airplane on the occasion of his inauguration, could welcome the youth in the new
building in 1895. In the same year the municipality of Cluj gave the plot situated
at the corner of Bel-Torda and Külső-Torda streets to the state in order to build
there a modern library. By the turn of the century the university became the
intellectual centre of Transylvania, the sanctuary of science, where — as count
Imre Mikó expressed it — “the words of knowledge, enlightenment, and thus the
words of freedom are advocated”. All this is inseparable from the social, technical
and economical development that characterised Hungary and Transylvania. The
bourgeois society emerging in these years needed the development of education
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and science. More and more young people coming from bourgeois families were
attracted to sciences. It happened quite often that a young person gave up his
secure job and carrier for the sake of a scientific carrier.

We must mention the benefit of the Hungarian high-school reforms. The law
on public education linked with the name of József Eötvös and the emancipa-
tion of Jews meant major changes in the field of mathematics and physics too.
A modern network of schools was built up by the end of the nineties, where
the education became demanding and effective. Excellent high-school teachers
showed up, whose tireless work won many young people over to sciences.

The mathematics part of the modern Trefort curriculum elaborated for high-
schools was worked out by Gyula Kőnig. He criticized the previous ineffective
methods of mathematical education. He wrote: “We have to ask if one could
expect better results on the basis of a methodology, which transforms the high-
school mathematics curriculum into a series of abstract, uninteresting, thus
incomprehensible «truths»; due to this methodology the students can hardly
understand what serves all what they learn, and its aim is not to develop the
mathematical thinking, but to teach as many «theorems» as possible.”

Loránd Eötvös (1848–1919) and Gyula Kőnig(1849–1913) founded in
1891 the Society of Mathematics and Physics. Loránd Eötvös formulated the
purpose of the Society as follows: “Let’s learn from each other, thus we teach
better.” The teacher training colleges and training schools established on the
basis of the concepts of Mór Kármán (the father of the world-famous physicist,
Tódor Kármán) next to the universities in Budapest and Cluj (like the Demon-
stration School in Budapest) resulted in the increase of the teachers’ training
level. The specific Hungarian teacher-training model was completed with the es-
tablishment of the Eötvös College. In this college talented students could learn
under the guidance of famous professors.

The “Hungarian wonder”, the Középiskolai Matematikai Lapok (High School
Mathematics Journal) launched by the young professor from Győr, Dániel Arany
in 1893 played an important role in mathematics and physics training. Among
such periodicals this is the journal lasting for the longest time in the world.
(After three years the legendary teacher of the Lutheran College in Budapest,
László Rátz took over the editing of the journal.) It turned out very soon how
useful was when gifted young people were racking their brains on dozens of
exercises for years and they wrote down their thoughts. Part of the students
educated by the journal called today officially KöMaL became scientists, the
others “only” very good professionals or professors. The best Hungarian math-
ematicians of the 20th century came among the students solving the exercises,
like those who developed mathematics in Cluj before the First World War to
the state-of-the-art.

Who were in those times the personalities whose work had an effect on the
development of mathematics in Cluj? Which works can be still found in Cluj
from those elaborated here besides those published in periodicals, despite the
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vicissitudes? Even a brief answer could be able to describe the local evolution
of mathematics at the beginning of the new century.

We continue the enumeration with Gyula Vályi (1855-1913), the most fa-
mous disciple of Réthy. He was born in Marosvávsárhely (Târgu Mureş), and
was the first important mathematician teaching at the university of Cluj, orig-
inated from Transylvania. He graduated his studies in 1877 in Cluj, then with
the support of the university attended the lectures of Weierstrass, Kirchhoff,
Kronecker, Borchardt and Kummer in Berlin for four semesters. He sustained
his thesis entitled Contributions to the theory of second-order partial differ-
ential equations in 1880 in Cluj. He became an associate professor in 1881 at
the university of Cluj. He was promoted full professor in 1884 of mathematical
physics, then in 1886 of elementary mathematics. He published several treaties
in the Journal of Mathematics and Natural Sciences. As Réthy mentions, “it is
not the number and size of his treaties, but their quality, which is impressive.”
He was impeded in his work by his frail health; despite this “his spirit led him
to create lasting things”. According to the curriculum of the university it was
Gyula Vályi who first presented course-like lectures on the Appendix in the sec-
ond semester of the 1891–1892 academic year. He repeated this popular course
almost invariably every four years. The lithographed lecture notes of 102 pages
were published in 1904 in Cluj, with the title On János Bolyai’s Appendix. He
completed the original demonstrations by explanations. When comparing the
absolute and the hyperbolic geometry he made use of Lobatschewsky’s results
in some places.

It is also due to Gyula Vályi’s enthusiastic work that Cluj became the cen-
tre of the Bolyai cult, and many of his disciples had achievements in the fur-
ther development of the Bolyai geometry. As a member of the board of the
Transylvanian Museum Society, Gyula Vályi represented for many years the
mathematicians.

Gyula Farkas and Lajos Schlesinger, who came to Cluj ten years later, were
an outstandingly great asset to the university. Their activity had a predomi-
nant effect on the local mathematics. They used their professional prestige and
aptitude to ensure the conditions of training and research in mathematics at
the highest level and to secure the worldwide recognition of the results of Cluj
school.

Gyula Farkas (1847–1930) was born in Sárosd. He studied at the university
of Pest, where Ányos Jedlik had a great influence upon him. Later, thanks to
count Géza Batthány, he peregrinated to France. Among his youthful achieve-
ments in mathematics we mention here only his examinations referring to Farkas
Bolyai’s trinom equation, which had referred to the algorithm for the approxima-
tion of the roots briefly presented in the Tentamen. Thus the Bolyai algorithm
became well known, and many Hungarian and foreign mathematicians have been
interested in its generalization, applicability, and the related convergence issues,
even in our days. Gyula Farkas was an associate professor until 1887 in Pest,
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when he was nominated extraordinary professor at the university of Cluj. In
1888 he became a full professor at the university, he held this position until
1915. His former assistant, Rudolf Ortvay wrote on him: “his scientific activity,
as well as his activity in public affairs related to the university was character-
ized by thorough criticism, the unyielding search for the truth that could not be
diverted by issues of minor importance... And precisely because he didn’t look
for popularity, he acquired a great authority and had a fruitful influence on the
direction of university affairs.”

As a professor his interest focused mainly on problems related to theoretical
physics, but he elaborated the background of the examined physical problems
in such deepness that there are classical mathematical results as well among
these elaborations. Dating from the nineties he was particularly preoccupied by
the Fourier principle of mechanics. His studies specify the necessary condition
of balance in case of conditions given by inequalities. For this he demonstrates
his theorem on linear inequality, which is one of the most famous Hungarian
mathematical achievements, known as the Farkas-lemma. On the basis of these
works it is obvious today that Gyula Farkas was one of the modern creators of
the optimization theory.

He published his university courses in carefully elaborated lithographed pub-
lications. His lecture notes can be still found in the mathematics library in
Cluj, i.e.: Analytikus mechanika, 1907–08 (Analytical Mechanics), Analitikus
mechanika, 1913–14 (Analytical Mechanics), Erőtan, 1913–1914 (Dynamics), A
mechanika alaptanai, 1913-14 (The Principles of Mechanics). The Vector-tan
és az egyszerû inaequatiok tana (Theory of Vectors and the Theory of Simple
Inequalities) published in Cluj is also accessible. This one is a well-written book
on vector analysis comprising the main results of his research.

Lipót Klug (1854–1944) was born in Gyöngyös. He took a diploma in
mathematics at Budapest. He was a professor in Pozsony (Bratislava), then
in Pest. Between 1897–1917 he was a professor at the department of descrip-
tive geometry at the university of Cluj. Meanwhile he published five popular
coursebooks in addition to numerous treaties: A projektív geometria elemei, Bu-
dapest, 1892 (The Elements of the Projective Geometry), Projektív geometria,
Budapest, 1903 (Projective Geometry), Az általános és négy különös Pascal-
hatszög configuratiója, Budapest, 1898 (The Configuration of the General and
Four Special Pascal hexagons), Ábrázoló geometria, Budapest, 1900 (Descrip-
tive Geometry) and A harmadrendû térgörbék synthetikai tárgyalása (Synthetic
Treaty on the Curvature of the Third Order). The first four of these still can
be found in Cluj. Unfortunately only one lecture notes remained: Az egyszerû
görbe felületek ábrázolása, 1909–10 (The Description of Simple Curvatures).

Lajos Schlesinger (1864–1933) was the best known professor abroad at the
turn of the century. He was born in Nagyszombat (Trnava), he attended high
school in Hungary, then studied in Heidelberg and Berlin. He taught in Cluj for
a semester in 1890 as an associate professor of the Berlin university. He was the
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disciple and the son-in-law of the famous professor from Berlin, Lazarus Fuchs,
that is why people said about him that “the talent is inherited mainly by the
son-in-law”.

In 1897, when he became a full professor at the university of Cluj, he al-
ready was a well known scientist. The Teubner Publishing House in Leipzig had
published the first two volumes of his famous book (Handbuch der Theorie der
Linearen Differentialgleichungen) that he had written as the associate professor
of the Berlin university. He published the third volume in 1898 as a professor
in Cluj. The society of mathematicians knew him by that time as one of the
prominent authorities in the theory of differential equations built on the complex
analysis. Many parts of this significant theory were enriched by Schlesinger.

After arriving to Cluj he got involved in education with a great enthusi-
asm besides the continuation of his research. Fifteen of his lecture notes still
can be found in the mathematics library in Cluj. It might not be useless to
enumerate their titles: Elliptikus függvények elmélete és alkalmazásai, 1898–99
(The theory of elliptic functions and its applications), Égi testek mechanikája,
1898–99 (The mechanics of celestial bodies), A differentiál-számítás, 1900 (The
differential calculus), Riemann-féle felületek, 1900 (The Riemann surfaces), El-
liptikus függvények, 1901 (Elliptic functions), Bevezetés a variatio számításba,
1902 (Introduction to the variation calculus), A tér abszolute igaz tudománya
(The absolute true science of space, jubilary lectures on the 100th anniversary
of János Bolyai), Differenciálszámítás, 190? (Differential calculus), Az abszolút
sík eltolásaiból alkotott discontinuus csoportokról, 1905 (On the discontinuous
groups formed from the translation of the absolute plane), Fucks-féle függvények,
1906-07 (Fucks functions), Égitestek mechanikája, 190? (The mechanics of ce-
lestial bodies), Görbevonalak és felületek elmélete, 1907-08 (The theory of curve
lines and surfaces), The theory of curve lines and surfaces Válogatott fejezetek
az infinitesimális geometriából, 1908 (The theory of curve lines and surfaces),
Égi testek forgásáról, 1908–09 (On the rotation of celestial bodies), Differenciál-
egyenletek elmélete, 1909-10 (The theory of differential equations). These lec-
tures are fascinating due to their clear, distinct style and the accurate treat-
ment of the referred latest results. There is no doubt that the above-mentioned
lectures belong to the best results of mathematical education in Cluj.

The book entitled Vorlesungen über lineare Differentialgleichungen and pub-
lished in 1908 by the Teubner Publishing House can be considered an important
result of Lajos Schlesinger’s scientific activity carried out in Cluj. This is not
the revision of the theory elaborated in the above-mentioned Handbuch, but
a treatment of linear differential equation systems using totally new methods.
This is the first monograph treating the linear differential equation systems
with variable coefficient using the product integral as interpreted by the Italian
mathematician, V. Volterra.

It can be considered a recognition of his authority that the Teubner Pub-
lishing House published in 1909 his book entitled Bericht über die Entwicklung
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der Theorie der linearen Differentialgleichungen seit 1865, edited by the Ger-
man Mathematics Society. He wrote his famous book, Automorphe Funktionen
that still can be found in the mathematics library in Cluj as a professor at the
university of Giessen.

During his stay in Cluj Schlesinger contributed significantly to the advance-
ment of the local mathematics. Together with Gyula Farkas and Gyula Vályi he
had a basic role in the establishment of an excellent mathematics library within
the university.

4 The Bolyai centenary

In 1894 the Congres international de bibliographie des sciences mathematiques
presided by Henri Poincaré was preparing a considerable bibliographical volum,
which would have included according to the original plans a chapter entitled
Geometrie de Lobatschewsky. Thanks to the mediation of a group of Hungar-
ian scientists the title of the chapter was changed to Geometrie de Bolyai et
Lobatschewsky. From this time on the scientific literature mentions these two
names as equivalents in relation to the non-Euclidean geometry. Why so late?
The recognition of János Bolyai’s merits was delayed by several reasons. First
Gauss, though he recognized the geniality of Bolyai (“Ich halte diesen jungen
Geometer v. Bolyai für ein Genie erster Grösse”, he wrote in one of his letters),
unfortunately had a disadvantageous effect on the posterity’s opinion on the
Appendix. Gauss stated that it had been him who raised first the idea of the
non-Euclidean geometry during his conversations with Farkas Bolyai, and that
the father had mediated his idea to János. A similar opinion was expressed in
relation to Lobatschewsky, in this case Bartels (the former disciple of Gauss,
who later became a professor in Kazan) was considered the mediator of the new
ideas. The truth is that János Bolyai discovered alone and independently his ge-
ometrical system as his heritage revealed. However the delay of the recognition
can be attributed first of all to the neglect of the Hungarian mathematicians
of those times. (It is typical that Sámuel Brassai criticises Bolyai’s work even
in 1886.) It is well known that the pioneers in the research on Bolyai’s work
were foreigners. Hoüel, a professor from Bordeaux translated the Appendix into
French in 1867 and published it with a biography of Bolyai written by Fer-
enc Schmidt, an architect from Temesvár (Timisoara). The Italian translation
edited by Battaglini was published in the same year, and the review in German,
as we already mentioned, was published in 1872. In 1891 the English version was
published thanks to the contribution of Halsted, a professor from Texas. So the
representatives of the Hungarian scientific life recognized their debt. Under the
effect of the foreign initiatives after a long wrangling the Appendix was finally
published in Hungarian too, in 1897. These were the preliminaries preceding
János Bolyai centenary.
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The centenary celebrations were prepared in Cluj in accordance with the
importance of the event. The Faculty of Mathematics and Natural Sciences of
the university decided on its session held on December 29th, 1899, that on his
hundredth anniversary the house where János Bolyai had been born would be
supplied with a memorial plaque, a ceremonial commemoration would be held,
and a Festschrift would be issued, which would outline the influence of the Bolyai
geometry on the development of mathematics in the 19th century. Gyula Farkas
and Lajos Schlesinger played the main role in the organisation of the centenary
celebrations.

Lajos Schlesinger identified the birth house of Bolyai. This house is one of
the famous buildings of Cluj today, thus it might be of interest if we touch upon
the condition of its identification. A letter of Farkas Bolyai to Gauss written
on September 11th, 1802, in Domáld gave the first point of reference in the
research, where he specified the address as follows:

“Meine Adresse: Mr. Wolfg. Bolyai
Bodor Pál úrnal
a belső közép utczában”
(“My address: Mr. Wolfg. Bolyai, Mr. Pál Bodor’s house, in the Central

street”).

The following letters contain the same address until September 16th, 1804,
when Farkas specifies his address in Marosvásárhely (Târgu Mureº). It seems
possible that the Bolyai family during its stay in Cluj, namely between autumn
1802 and spring 1803 lived in Bodor’s house in the Belközép street, and János
was born in that house. However, according to the evidence given by many
inhabitants in Cluj (i.e. László Bodor, judge of the Court of Appeal, the great-
son of Pál Bodor) and by the letters written by Farkas Bolyai to Pál Bodor, and
preserved in the archives prove that the parents of Mrs. Bolyai (born Zsuzsanna
Benkő) had their own house. Pál Bodor sold this house by auction in 1816 to
Jakab Szenkovits on behalf of family the widow of József Benkő. Schlesinger
came to the conclusion that the Bolyai family had lived in the house situated
also in the Belközép street, belonging then to József Benkő, later to Szenkovits,
and that János Bolyai had been born in that house. Most probably the fact that
Farkas Bolyai directed his letters when staying in Cluj, as well as when staying
in Domáld to his friend, Pál Bodor can be explained by that he found useless
to trouble Gauss with a change of address for such a short time, as his house in
Cluj was so close to Pál Bodor’s house, that he could gather his letters without
any loss of time. On the basis of the letters of Bolyai found in Bodor’s archives
Schlesinger states firmly: “Thus it is ascertained that the house in question is
the house located on the corner of the Tivoli and Belközép streets in the main
square’s direction, which now belongs to the merchants’ society; as it has only
one entrance from the Tivoli street, this house doesn’t have a number on the
Deák Ferencz street, but its address is Tivoli street no. 1. Thus it is proved that
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the house on Tivoli street no. 1 is the house where János Bolyai was born.”
[N.B. Belközép street got the name of Deák Ferenc in 1899.]

The Festschrift with beautiful leather binding written in Latinis entitled: Li-
bellus post saeculum quan Joannes Bolyai de Bolya anno MDCCCII a.d/ XVIII
Kalendas Januarias Claudiopoli natus est, ad celebrandum memoriam eius im-
mortalem ex consilio Ordinis Mathematicorum et Naturae Scrutatorum Regiae
Litterarum Universitatis Hungariae Francisco-Josephinae Claudiopolitanae edi-
tus, Claudiopoli, MCMII.

Besides the Latin translations of three famous letters written by János Bolyai
to his father in 1823 from Timisoara (Temesvár) the book comprises three stud-
ies; the first two were published in 1903 in the Acta Universitatis (in Hungarian).
These are the following:

– Lajos Schlesinger (Cluj): On the application possibilities of the absolute
geometry on the complex variable function theory

– Paul Stäckel (Kiel): On the mechanics of multiple dimensional manifolds
– Robert Bonola (Pavia): The list of studies on absolute geometry published

between 1839 and 1902.
The university board decided in November 1902 to celebrate János Bolyai’s

hundredth birth-anniversary on January 15th, 1903, considering that the guests
coming from a great distance would have difficulties in travelling in the middle
of December. They formed a committee to organise the celebrations, its four
members were Dénes Szabó (president), Gyula Farkas, István Apáthy and Lajos
Schlesinger. They invited Lajos Schlesinger to give a memorial speech. The
Hungarian Academy of Sciences lead by Loránd Eötvös appointed a delegation
on November 22nd, 1902, its members being Kálmán Szily, Mór Réthy, József
Kürschák and Béla Tötösy.

On the assigned day, at ten o’clock in the morning the assembly hall of
the new university building was already full with the delegates of the scientific
institutions and societies, with the eminent officials and intellectuals of Cluj,
with “a charming female audience” and youth. The Rector who was a historian
opened the ceremonial meeting according to the style of the époque: “On the 15th
of December 1802 a tiny star passed over our town’s horizon; during its short
career this star glittered as first-class brightness on the sky of our culture and of
the universal science, in order to give light where humans have never looked at
before. János Bolyai disclosed those secrets that had lead many brilliant talents
to maze for 2000 years.”

The presiding rector invited all the speakers of the delegations, who gave
their welcoming speech as follows: Loránd Eötvös, the president of the Hungar-
ian Academy of Sciences; dr. Izidor Fröhlich, representing the Hungarian Royal
University; dr. Manó Beke representing the Faculty of Arts of the University
of Budapest; dr. Gusztáv Rados from József Royal Hungarian Technical Uni-
versity from Budapest, Emánuel Budisavlievic lieutenant-colonel representing
the Imperial and Royal Technical and Military Academy of Vienna; dr. József
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Kürschák representing the Mathematics and Physics Institute; Lajos Csíki rep-
resenting the Reformed College of Marosvásárhely (Târgu Mureº); dr. János
Szamosi representing the Transylvanian Literary Society, and János Bedőházi,
the writer of the two Bolyais’ biography. The speeches made a deep impression
on the audience, which expressed its appreciation by enthusiastic ovation. Be-
sides the speakers many institutes and associations sent their delegates. With
the occasion of the ceremony the Mathematics Institute in Goettingen sent
its greetings via telegram, the Association of German Mathematicians and the
Mining and Forestry Academy from Selmecbánya via letters.

As mentioned in the Prologue, the establishment of the Bolyai-prize was
announced during the centenary celebrations. The initiators were Gyula Kőnig,
Gusztáv Rados, József Kürschák, Gyula Farkas and Lajos Schlesinger. Kálmán
Szily, the secretary-general of the Hungarian Academy of Sciences submitted
the following report with reference to the prize: “The Hungarian Academy of
Sciences contributes to the celebration of the hundredth anniversary of János
Bolyai by deciding to establish a prize in memory of the immortal scientist,
respectively of his father of profound thinking and master to his son in sciences.
The Bolyai-prize consisting of 10,000 crowns and a medal will be awarded to the
author of the most outstanding treaty in mathematics published within the last
5 years wherever and in whatever language, taking into account the previous
scientific activity as well of the person in question. The prize will be awarded for
the first time in 1905, after that in every five year during the meetings held in
December. One side of the medal will show the building of Hungarian Academy
of Sciences from Budapest, the other will contain a Hungarian inscription.”

Unfortunately the prize could have been awarded only twice. During the
First World War the international scientific relationships broke off, the money
lost its value, thus such a proper initiative didn’t have any continuation. As
shown by his lecture notes, the Bolyai geometry was in the centre of the preoc-
cupations of Lajos Schlesinger. Therefore it wasn’t accidental that he was invited
to give the memorial speech during the celebrations. He thoroughly prepared it.
He enumerated in his meaty speech important arguments related to the priority
debate on Bolyai and Lobatschewsky, thus he contributed significantly to the
recognition of Bolyai’s genius.

Following the memorial speech a few copies of the Festschrift were dis-
tributed, then at the rector’s request the celebrating audience visited the house
where János Bolyai had been born. They all wanted to be present when the
representatives of the Faculty of Mathematics and Natural Sciences unveiled
the memorial plaque placed on the facade on the Deák Ferenc street. During
the unveiling Gyula Farkas (dean at that time) gave a speech. He said for ex-
ample that “We call János Bolyai on this plaque the Hungarian Euclid, as he
was a master in geometry like Euclid. We mention his father, Farkas Bolyai too,
because he deserves this as the deep thinking author of the Tentamen, besides
he was father in developing the talent in mathematics of János.”
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The text written on the plaque is as follows: “Az 1802. év 12. havának 15.
napján, itt született Bolyai János, a Magyar Euklides, bolyai Bolyai Farkasnak,
a Tentamen mély gondolkodású szerzőjének fia, minek az emlékezetére száz év
múltán a Ferencz József Tudományegyetem matematikai és természettudományi
kara állítá e követ.” (“In this place János Bolyai was born on the 15th of Decem-
ber, 1802, the Hungarian Euclid, son of Farkas Bolyai, the author of Tentamen
with a profound thinking, in memory of whom a hundred years after the Faculty
of Mathematics and Natural Sciences placed this stone.”)

Simultaneously to the establishment of the Bolyai prize the Academy an-
nounced a call for writing a monograph on the Bolyai-Lobatschewsky geometry.
We don’t know about the results of the announcement. In 1902 Lajos Schlesinger
held lectures at the university of Cluj under the title The absolute true science
of the space, and according to Barna Szénássy this was intended to be the
basis of the monograph prepared for the announcement. The partly unreadable
manuscript still can be found in the mathematics library in Cluj. Its publication
would be extremely important for the history of science.

It is certain that the centenary celebrations organised in Cluj meant the
definitive victory of János Bolyai not only abroad, but in his own country too.

5 The peak

Besides his up-to-day valid scientific activity, Gyula Farkas had a predominant
role in the development of the Mathematics Seminar in Cluj. Started out al-
most from nothing, the institute became after a quarter of century one of the
best scientific workshops of the Monarchy. Due to his commitment to sciences
and outstanding virtues Farkas had a great authority among his colleagues and
students, which he made use of in the university administration. He was dean
for seven times and once even the rector of the university. His word was always
decisive. He was exigent, he expected much from himself and others. He ap-
preciated the human values, and helped a lot those deserving it. He made use
of his influence to improve the material and personal conditions of the univer-
sity activity. It was due exclusively to his intercession that such brilliant young
mathematicians came to the university like Lipót Fejér (1905), Frigyes Riesz
(1911) and Alfréd Haar (1912), who together with the elder professors raised
the quality of the mathematics training to such a high level in the first decades
of the 20th century, that this level, considering the international reputation of
the professors, would be hard to surpass.

The following letter written by Gyula Farkas to Lipót Fejér demonstrates
how deeply Gyula Farkas was concerned about the cause of the domestic math-
ematics and physics. (These letters were published by András Prékopa in his
treaty Farkas Gyula élete és munkásságának jelentősége az optimalizálás elmé-
letében - The life of Gyula Farkas and the significance of his work for the opti-
mization theory; see Sándor Komlósi and Tamás Szántai eds.: Új utak a magyar
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operációkutatásban. In memoriam Farkas Gyula - New methods in the Hungar-
ian operations research. In memoriam Gyula Farkas, Dialóg Campus Publishing
House, Budapest-Pécs, 1999.)

After he managed to appoint Lipót Fejér to the university of Cluj, he wrote
the following letter on July 9th, 1905:

Honourable Dr. Lipót Fejér,
Tégla street, House Kolozsi, Gödöllő

Dear Doctor!

I am happy to find out from your kind letter that you are spending your
time in the best place, in family circle, and the Alma Mater could not directly
profit of this time of yours. Though I know that even so our common home gets
its part too, indirectly: either you are spending it by resting, either by working;
in the first case you are gaining energy, in the second you gain and transmit
knowledge. . . I give you my best regards; please transmit them to your relatives
too. I think constantly with love to our past and future collaboration.
Yours sincerely, Gyula Farkas

In his letter dated October 1st, 1911 Gyula Farkas is yet concerned with
bringing Frigyes Riesz to Cluj:

My Dear Learned Colleague!

I kindly ask you to communicate me the address of Frigyes Riesz, so that
following the decision concerning the substitution I can directly apply to him.

Your sincere friend, Gyula Farkas

He wrote on September 3rd, 1911 on the back of a card:

Honourable Dr. Lipót Fejér
University full professor
Budapest, Vörösmarty street 19, ground floor, 1st apartment

The committee has approved my proposal yesterday, and recommends to in-
vite Frigyes Riesz to substitute the ordinary department and to manage the sem-
inar. The faculty session will be held the day after tomorrow.

The next letter is dated October 20th, 1911.

Honourable dr. Lipót Fejér
University full professor
Budapest, Vörösmarty street 19, ground floor, 1st apartment

Most Respected Dear Colleague!

Today our new colleague, Frigyes Riesz has arrived; the dean, Vályi and
myself met him at noon in the dean’s office, and entrusted him to lead the math-
ematics seminar too. He instantly wrote on our black board the announcement
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of his lectures and seminars, he will start his lectures on the 23rd. All this reas-
sured us deeply. I transmitted to the dean’s office your notification on Haar in
the very momnet I received it.

With kind regards,
Your true friend, Gyula Farkas

As Lajos Schlesinger left the university in summer 1911, Gyula Farkas got
interested in Alfréd Haar. He wrote the following letter on November 4th, 1911:

Honourable dr. Lipót Fejér
University full professor
Budapest, Nádor street 51, 5th floor

Dear and Respected colleague!

Our colleague, Frigyes Riesz has already started his work with a great enthusi-
asm in the mathematics seminar, too... I received a letter from Haar yesterday.
It seems that the invitation addressed to him denominates me as the faculty
referent of the competition. Therefore in my answer I decided to describe the
essentials. Otherwise Haar’s letter confesses such deep patriotism that I am no
more afraid to loose him in favour of some universities. I wish you a happy life
in your new apartment,

Truly yours,
Gyula Farkas

During their stay in Cluj one of the main tasks of Lipót Fejér, later of Frigyes
Riesz was the managing of the Seminar in Mathematics. The seminar directed
by Gyula Farkas, Lajos Schlesinger and Gyula Vályi was established in 1901.
Its real manager was Schlesinger until 1905.

Who were the above-mentioned representatives of the new wave? Lipót
Fejér (1880–1959) was born in Pécs. During his high-school studies he solved
successfully the exercises published in the Mathematics Journal. In 1897 he was
placed second at the competition organised by the Society of Mathematics and
Physics. In the same year he was admitted to the mechanical engineering sec-
tion of the Technical University of Budapest, but after a semester he moved to
the so-called general section, as a student in mathematics and physics. There
he attended mainly the lectures of Gyula Kőnig, József Kürschák and Gusztáv
Rados, then he moved to the University of Budapest. During the academic year
1899–1900 he studied at the University of Berlin, where he attended the courses
of L. Fuchs, G. Frobenius and H. A. Schwarz. Once returned home he spent
the 1900-1901 academic year at the University of Budapest. He published in
Comptes rendus his theorem on Fourier’s series that made his name all at once
worldwide known. He wrote his dissertation in mathematics on Fourier’s series,
in physics on the phenomena of diffraction. From September 1st, 1901 he was an
associate professor at the University of Budapest, in spring 1902 he acquired the
doctor’s degree there. He spent the first semester of 1902–1903 in Goettingen,
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where he attended mainly the lectures of D. Hilbert and H. Minkowski. He spent
the second half of the same year in Paris, attending the lectures of E. Picard
and J. Hadamard. He had nine publications until 1905, three among these in the
Comptes rendus, one in the Matematische Annalen. After such preliminaries,
as Gyula Farkas expressed it, no one would have liked to “loose him in favour of
some foreign universities”. The university of Cluj ensured him the possibility of
advancement. He was employed as an associate professor at the Department of
Mathematical Physics (its head being Gyula Farkas). Besides the proofs of his
brilliant talent in mathematics a reason for this could have been that he had
learnt physics earlier, and he was interested in theoretical mechanics. Following
his habilitation on June 23rd, 1905 at the Faculty of Mathematics and Natural
Sciences of the Ferencz József University in Cluj with his thesis called Stability
and instability examinations in the mechanics of mass point system his star
was raising rapidly. In the first half of the 1905-1906 academic year he was the
assistant lecturer of Lajos Schlesinger, in the second semester the associate pro-
fessor of analysis and analytical mechanics, in September 1906 senior lecturer,
and in 1911 extraordinary professor. He finished his activity at the university
of Cluj in summer that year, as from September he became full professor at the
University of Budapest. In 1908 he was elected a correspondent member of the
Hungarian Academy of Sciences. During his stay in Cluj he published around 30
scientific treaties, mainly in famous journals of mathematics. His treaties relate
to Fourier’s series, theoretical mechanics and analytical functions.

Frigyes Riesz (1880–1956), who directed the Department of Higher Math-
ematics between 1912 and 1919, was born in Győr, and he was educated with
an extreme care. He studied at the Grammar School of the Benedictine Order in
Győr, then started his university studies at the Technical University of Zurich.
However his vocation for science prevailed over the attraction to make a career
as an engineer, thus he continued his studies from 1899 at the University of Bu-
dapest, and then spent a year in Goettingen. In Budapest the lectures of Gyula
Kőnig and József Kürschák, in Goettingen the lectures of Hilbert and Minkowski
had the greatest influence on him. In 1902 he was conferred a doctoral degree in
Budapest. He published his first scientific discovery, the so-called Riesz-Fischer
theorem when he was 27 years old. Later the identity of the two composition
of the quantum mechanics, the wave mechanics of Schrödinger and the matrix
mechanics of Heisenberg has been proved using this theorem. It is also linked
to Riesz the widely applied discovery of the space of the integrable function on
the pth exponent, the representation of the linear functionals defined on the set
of the continuous functions in the form of the Stieltjes integral, respectively the
definition of the dual of the Hilbert spaces. In 1908 he defined in his presen-
tation held at the international mathematics conference in Rome the term of
the topological space. Due to all these youthful discoveries he became famous
before coming to Cluj.
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From his lecture notes only three can be found in Cluj today: Függvénytan,
1911–12 (Function theory), Fourier-féle sorok, 1913–14 (Fourier’s series) and
Függvénytan, 1914–15 (Function theory). The book of Riesz published in Paris
and entitled Les systemes d’équations linéaires a une infinité d’inconnues is also
available; it had an important role in the development of the functional analysis.
During his work carried out in Cluj he published several important treaties.

Frigyes Riesz is not only one of the excellent Hungarian mathematicians, but
he is considered worldwide as one who had the greatest effect on the grounding
and development of modern branches of mathematical analysis. The terms and
methods he had introduced, the achievements related to him belong today to
the classical material of the real function theory, the functional analysis and the
general topology. These results were partly included in his famous book written
jointly with Béla Szőkefalvy-Nagy entitled Leçons d’analyse fonctionnelle, which
was translated into several languages, and is known worldwide.

The last young mathematician who came to Cluj from the present territory
of Hungary was Alfréd Haar (1885–1933). He was born in Budapest; he grad-
uated at the Lutheran High School, where László Rátz, the famous editor of the
Középiskolai Matematikai Lapok (High School Mathematics Journal) was his
mathematics teacher. During his high school studies Haar took part diligently
in the editing of the journal. In autumn 1903 Alfréd Haar won the first prize
at the Eötvös Loránd Mathematics Competition organised every year for those
who had acquired high school degree the previous year. He studied in Budapest
and Goettingen. He attended the lectures and seminars of Beke, Eötvös, Frölich,
Kürschák, Rados, Scholtz in Budapest, respectively of Carathéodory, Hilbert,
Klein, Minkowski, Prandtl, Runge, Schwarzschild, Voigt and Zermelo in Goet-
tingen. He took his doctor’s degree under the guidance of Hilbert. After that
he was an associate professor at the Technical University in Zurich. In 1912
he was nominated to one of the physics departments at the university of Cluj,
first as extraordinary professor, then in 1917 as full professor. His work had
an acknowledged effect on the modern development of mathematics. His talent
was linked with the conscientiousness of the real scientist. His research covered
a wide area. His results related to the systems of orthogonal functions, to the
variation calculus, to the singular integrals, to the theory of sets, the function
approximation, the linear equations and the topological groups are famous even
today. The terms Haar’s basis, the function systems having Haar features, but
especially the term Haar’s integral are definitely part of the every-day tools of
mathematicians. The present effect of Haar’s results are well proved by the lec-
tures kept at the centenary scientific meeting in 1985, which are collected in the
volume entitled Alfred Haar Memorial Conference.

Alfréd Haar didn’t publish any book, but he compiled several well-written
notes, which contain many original details, and could be used today as univer-
sity coursebooks. Unfortunately only four can be found in Cluj: Differential-
Gleichungen (Goettingen, 1911), Algebra (Algebra, 1912-13), Determinánsok és



130 József Kolumbán

quadratikus formák, 1912-13 (Determinants and quadratic formes), Számelmélet,
1915-16 (Number theory).

6 Cluj, a beautiful town

Finally let us speak about Cluj how it looked a hundred years ago. László Pas-
suth in his autobiographical novel entitled Kutatóárok (Research ditch) relates
a few memories on the atmosphere of the town. “I remember the town as bor-
dered on one side by the Monostor hill, on the other side by the green area of
Hóstát. Next to the infinite main street of Hóstát a few thousands of peasants
lived as corpus separatum. Quite a lot of railway workers formed settlements,
there were a few smaller factories... There were relatively many banks, religious
institutions, but above all schools... The flooding of students coming from out-
side the town lasted from September to June, and ensured livelihood for many
meal-houses, tailors, hosts. The wisdom was shared with law students on semi-
nars, and the «nightlife» of the town was quite colourful. . . There were just a few
industrial workers, and I don’t remember feeling any social tension in the form
of wage-demands, strikes or unemployment. The social ideas penetrated mainly
via theoretical sources. . . certain university teachers became «radicals», . . . the
influence of the Workers’ Savings Bank was strong (Béla Kun worked there
too), the coexistence of different religions ensured a certain patience that could
not stand any inflexibility. As perhaps a town with such a diversified map of
religions nowhere existed in Hungary at that time, where the colleges partly re-
mained denominational colleges. The majority was Catholic, but a great part of
the native inhabitants was Calvinist. The Lutherans were mainly Saxons. . . The
only episcopate of the Unitarians was here... Two «Greek» churches served the
Romanian congregations: a Greek Catholic and an Orthodox church. Before the
war a patrician Jewish community lived in the town, leading a neolog lifestyle.
The biedermeier town with its small intellectual volcanoes was in fact a provin-
cial centre of gossiping, though the habitants didn’t know each other as much
as in other towns with fifty-sixty thousand of inhabitants. The reason for this
was the constant moving of people, first of all among the middle class: a great
number of clerks settled down and moved away, according to the laws of a clerk’s
existence.”

The centre got its present aspect in those times, the masterpiece of János
Fadrusz, the statue of king Matthias Corvinus was placed there in 1902.

The café of the New York Hotel was the centre of social and intellectual
life. There were two separate long tables in the hall, where university teachers
and aristocrats got on well together. They met each other very often; they were
drinking and moving together to the artists’ tables. The actors of the National
Theatre, writers, journalist had their permanent, traditional tables. “There are
in Cluj a few obstinate, incorrigible idealists. They have subtle taste and are in-
clined to arts. You can find among them painters, sculptors, architects, writers”
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— the journal called Ellenzék (Opposition) wrote this on January 3rd, 1905.
The specific, historic atmosphere of the town, in the meantime its intellectual
avant-gardism could be felt on these meetings. According to the oral traditions
Lipót Fejér was a regular customer in the New York Café. That’s how he met,
during a tarot game the mother of Passuth, who was of the same age. According
to Passuth’s relating the young professor asked the woman after the game why
she wouldn’t join to the university, and he proposed to prepare her in mathe-
matics. . . Fejér’s range of interests went far beyond mathematics. He loved music
passionately, and he himself played well the piano. Musicians and writers appre-
ciated his opinion as well as aestheticians and law philosophers. He met several
times Endre Ady too in the café. The portrait of Ady dedicated with cordial
words illustrates their friendship.

The Farkas street with its beautiful chestnuts was the common sanctuary of
science and muses. At one end there was the main building of the university,
next to it the old theatre built of stone, opposite to them there was the Piarist
High School, at the other end of the street there was the Reformed High School
and the Reformed Church without a tower. These buildings and their institu-
tion defined the atmosphere of this famous district. Our great mathematicians
entered their workplace, the main building of the university from this street.

7 Epilogue

In 1919 the university of Cluj entered under Romanian authority, therefore most
of the professors – like Alfréd Haar and Frigyes Riesz – moved to Szeged, where
they laid the foundations of a new university. In the meantime the Hungarian
“mathematicians producing machine” continued its operation. A short time after
the war great scientists showed up, like Tódor Kármán, György Pólya, Gábor
Szegő, John von Neumann and others. However they didn’t start towards the
eastern regions of the Carpathian Basin anymore, alike their colleagues a few
years before, but towards. . . But this one is another story to tell.
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All the people who ever looked more deeply into the work and writings of the
two Bolyais were impressed by their greatness and could no longer be indifferent
about them. The same thing it may have happened to Gyula Farkas, the most
quoted professor of the former University of Kolozsvár. Gyula Farkas’ greatness
was also appreciated only by posterity. Today the impact factor and the intro-
duction of international quotations evidently show that he was one of the most
prominent professors of the University of Kolozsvár.

The confession of Gyula Farkas about the Bolyais

Let us remember the words of Gyula Farkas, uttered at thhe inauguration of
the Bolyai memorial plaque, then in Marosvásárhely, at the reinterment of the
Bolyais.
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Fig. 1: Birth-house of János Bolyai. Fig. 2: Present grave of two Bolyais.

There Dr. Gyula Farkas, Dean of The Faculty of Mathematics and Natural
Sciences addressed the following speech to Mr. Antal Salamon city counsellor
and deputy of Kolozsvár City Council:

Respected Sir of the Council!
The Faculty of Mathematics and Natural Sciences of The Ferencz József

Hungarian Royal University of Sciences decided already three years ago to search
for János Bolyaiś birthplace and to mark it with a memorial plaque. In the
research it has been supported by the respected Council of our noble town.

The first traces led to another house that was owned by the landholder Bálint
Betegh at the opposite side of Ferenc Deák street. At the time of János Bolyai s
birth it was the house of Pál Bodor, the provincial controller of the Transylvanian
Cashbox.

However, one of my professor colleagues found out that in this house our
János Bolyai was born. It is presently owned by the favoured local Trade As-
sociation and at that time it had been the property of János Bolyai’s maternal
grandfather, József Benkő.

Having learnt this fact, The Faculty immediately gave effect to the setting up
of the memorial by the very kind leave of the Trade Association. On the plaque
János Bolyai is said to be the Hungarian Euclide, since he had been a creative
master of geometry like Euclide. His father, Farkas Bolyai is also remembered
on the plaque, he deserves this as the deep thinking author of the Tentamen, and
also for supporting the development of János’s mathematical talent.

I am turning to the respected Sir of The Council with the solid conviction
that the worthy public of Kolozsvár Free Royal City will treasure the memory of
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János Bolyai’s natal house and I ask that the monument be kindly accepted in
the protection of the respected city authorities.

Fig. 3: Original grave of János Bolyai. Fig. 4: Present location of original grave.

With zealous words Antal Salamon accepted the monument in the protection
of the town, promising to honor it in the greatest grace and goodwill.

Now the wreaths of the Hungarian Academy of Sciences, the Budapest Royal
Hungarian University of Sciences, The Association of Mathematics and Physics,
the public of Kolozsvár’s Free Royal City and the The Ferencz József Hungarian
Royal University of Sciences have been placed on the memorial, the text of which
is the following:

In the year 1802, in the 12th month, on the 15th day, here was born János
Bolyai Bolyai, the Hungarian Euclide, son of Farkas Bolyai Bolyai, who was
the deep thinking author of the Tentamen. After 100 years of János Bolyai’s
birth The Faculty of Mathematics and Natural Sciences of The József Ferencz
University of Sciences has paid this tribute. (1903)

The speech of corresponding member Gyula Farkas at the interment of János
Bolyai’s ashes next to his father’s in Marosvásárhely, 1911, July 7.

The Bolyais!
A father searching into depths and a son seeing into distant spaces! On

behalf of The Hungarian Academy of Sciences I salute your ashes. Behold, a
careful organization brought your ashes together, since you too had been victims
of separation in vain: you belong together not only by the material order of nature
but also by the order of The one who rules over the countries of spiritual life
until infinite times.
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Since you have parted into the land of eternal peace, the common rooted and
mingled branched trees of arithmetics and geometry have given fruits with plenty
and ripened your theories as well and “The Appendix, Scientiam Spatii absolute
veram exhibens” has come to great glory, and today the enormous natural law
raises it to itself, the law of laws, calling our thinking into such a world of space
and time where the Bolyai-world of space finds a new impulse.

In the light of your glory our Academy paid a tribute famous all around the
world through the Bolyai Foundation, in your memory, who made the fame of
the Hungarian state so much greater.

Alas, you had to be among those craftsmen of science who cannot live the
triumph of their thoughts. But the bitterness that presses upon human frailty is
very small compared to the huge recompense that rewards the best workers of
cognition with cognition itself.

That is the reason that lessens our – your distant successors’ – pain, be
expressing our appreciation and gratefulness. In this manner I lay on your dear
monuments the wreaths of the Hungarian Academy of Sciences. (1911)

These few sentences truly demonstrate the spiritual greatness of Gyula
Farkas. Zoltán Gábos, academician, mathematician and physicist, the best spe-
cialist in Gyula Farkas’ life and work, successor of Gyula Farkas’ Department
correctly remarked that “we are much indebted to Gyula Farkas.” The presented
documents prove that Gyula Farkas searched for the documents available on the
Bolyais in Kolozsvár with great diligence and modesty. He bought these doc-
uments, made them a collection and found for them the best place possible,
the Archives of the MTA’s library. (The Library of the Hungarian Academy of
Sciences).

This fact can be appreciated only by those who know that in the State
Archives in Cluj the heritage of the professors of the Franz Joseph University
of Sciences is still not available for research. (All inquiries are rejected with the
excuse that these works are not yet arranged and registred.)

Gyula Farkas collected 31 documents about János Bolyai, and it is our re-
sponsability to transform these a common treasure by processing them.
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Abstract. Gyula Farkas (1847–1930), the great Hungarian scientist in mathematics and
physics, professor of the University of Cluj (1887–1915) dedicated an important part of his
scientific researches to the foundations of the mechanics. He focused mainly on the conditions
of the mechanical equilibrium, dialing a more general form of the principle of the virtual work,
the inequality form, known as the mechanical principle of Fourier, dedicating many scientific
papers to this principle and to the related mathematical problems. Farkas dealt with the foun-
dation of force equilibrium in mechanics and thermodynamics when he created the famous
theorem of homogeneous linear inequality systems.

Gyula Farkas made not only researches dedicated to the principles of mechanics, but in
his courses of Analytical mechanics he used the Fourier-principle for axiomatic foundations of
the mechanics and in different applications.

In this paper a comprehensive presentation of Gyula Farkas’ work dedicated to the me-
chanical Fourier-principle is given.
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1 Introduction

It is widely accepted that Gyula Farkas (1847–1930) was one of the greatest
Hungarian scientists in mathematics and physics. To the present days he was
one of the most famous professor of the University of Cluj (Kolozsvár, Hungary
at that time), where he worked twenty-eight years (1887–1915). The main part
of his scientific activity is related to this years spent in Kolozsvár, where he made
fruitful researches in various fields of the theoretical physics and mathematics.

In December 1892 Gy. Farkas participated in a celebration in Padova where
the 300th year anniversary of Galilei’s starting his activity there was held. One
month later, in January 19, 1893 he presented the use of the virtual work in the
papers of Galilei at the Mathematical and Physical Society in Budapest.

Starting from this year (1892) Gyula Farkas dedicated an important part of
his scientific researches to the foundations of the mechanics. He focused on the
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conditions of the mechanical equilibrium, dealing with a more general form of
the principle of the virtual work. He studied the inequality form of this principle,
the so called Fourier-principle of the mechanics. In the next years he dedicated
9 scientific papers to this principle, and other 9 papers related to its mathemati-
cal problems (see [22]). Farkas dealt with the foundation of force equilibrium in
mechanics and thermodynamics when creating the famous theorem of homoge-
neous linear inequality systems, the well known and so frequently cited Farkas
Theorem (see [20] and [21]).

Gyula Farkas made not only researches dedicated to the principles of mecha-
nics, but in his courses of Analytical mechanics presented at the Franz Josef
University of Cluj he used the Fourier-principle for theoretical foundations of
the mechanics and in different applications.

Our purpose is to make a comprehensive presentation of Gyula Farkas’ work
dedicated to the mechanical Fourier-principle.

2 Celebration of Galilei in Padova

In December 1892, Gyula Farkas representing the Franz Josef University of
Cluj – as dean of the Faculty of Mathematics and Natural Science at that time
– participated in a celebration in Padova where the 300th year anniversary of
Galilei’s starting his activity there was held. At this occasion the rector of the
University of Padova conferred the degree of doctor honoris causa to Gyula
Farkas (together with other representatives of different universities).

For this special anniversary Farkas made a solid preparation, with a deep
study of Galilei’s work. Coming back, he presented two talks in January 19, 1893
at the current session of the Mathematical and Physical Society (Math. Phys.
Társulat) in Budapest. In the first one, entitled About Galilei and the celebration
of Galilei in Padova, he presented this celebration [1]. In the second talk Farkas
presented a study dedicated to the development of the principle of the virtual
velocities in Galilei’s works [2]. In this second talk he gave a detailed presen-
tation of Galile’s scientific papers dedicated to the problem of equilibrium. He
described four fundamental works, with Hungarian translation of the important
parts of these one. The short title of these works are: Della Scienza Meccanica;
Discorso intorno i Galleggeanti; Dialogo dei Massimi Sistemi; Dialoghi delle
nuove Scienze.

Farkas made a profound study of these works. We can see this reading
his analysis about some inaccuracy in Galilei’s work. He presented e.g. the
next problem: Two bodies C and D with equal masses and total weight π are
connected with an inextensible thread trough the fixed points A and B. The
stretched thread is horizontal. A third mass H of weight p is attached to the
center E of the thread (Fig. 1).
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Fig. 1: Galilei’s problem

Related to this problem Galilei asserts in his paper that the condition of the
motion of the weight p downwards is:

z

ζ
>
π

p
, (1)

where z = EF is the vertical displacement of H and ς is the vertical displace-
ment of C and D.

From the principle of the virtual displacements, Farkas deduce that the
condition of the motion of the weight p downwards is pδz > πδζ. By using
the conditions imposed trough the constraints, for the virtual displacements he
found zδz = rδr, δζ = δr, r = AF = BF . In conclusion the condition of the
motion is

r

z
>
π

p
(2)

which is the general correct form and differs from the condition (1) of Galilei.
Farkas also proved that the condition (1) is true only in the case when z → 0.

It seems that this was the moment when the attention of Gyula Farkas was
definitively captured by the principles of mechanics.

3 Farkas’ first paper dedicated to the Fourier-principle

In 1894 Gy. Farkas publishes in Hungarian his first paper dedicated to the
mechanical Fourier-principle. This paper entitled Applications of the mechanical
principle of Fourier [3], was published in the same year in German too in Math.
und Nat. Berichte aus Ungarn (M.N.B.U.).

The main purpose of the author in this paper is to show that ”the method of
Lagrange’s multipliers can be applied also, with small modifications, in the case of
the Fourier-principle”. Farkas underlines that this presentation is more general
than the one given by Ostrogradsky (1834), because Ostogradsky imposed the
condition that the number of relations expressing the constraints to be not greater
then those of the virtual displacements.

Farkas used the next formulation of the problem:



Gyula Farkas and the Mechanical Principle of Fourier 139

If the mass points with masses m′,m′′, . . . with Cartesian coordinates p′, p′′, . . .
and with the virtual changes of these coordinates δp′, δp′′, . . . verify the constrain-
ing conditions ∑

Aδp = 0,
∑

Bδp = 0, . . . (3)

∑
Lδp ≥ 0,

∑
Mδp ≥ 0, . . . (4)

then the condition of the equilibrium (the Fourier-principle) is:

∑
Pδp ≤ 0, (5)

where P is the free force acting on the coordinate p; in case of the motion the
d’Alembert’s principle states that

∑
(P −mp̈) δp ≤ 0, (6)

where p̈ denotes the acceleration in the variation of the coordinate p. All these
sums are made for all the coordinates.

Farkas makes the remark that this general principle of Fourier, which con-
tains inequalities, is more general than the classical principle of the virtual
work (also called principle of the virtual velocities) expressed only with equa-
tions. This is evident if we see that in case of the constraints expressed only by
equations, for any system of virtual displacements (δp) the opposite (−δp) is
also a virtual displacement and from

∑
Pδp ≤ 0 and

∑
P (−δp) ≤ 0 we have∑

Pδp = 0.
In the first part of this paper, following the introduction, entitled Algebraic

preliminaries, Farkas presents a first formulation and (not complete, [16], [20],
[21]) demonstration of his famous theorem:

Theorem 1 (Farkas). If any solution u, v, . . . of the system

A1u+B1v + . . . ≥ 0,
A2u+B1v + . . . ≥ 0,

etc.



 (7)

is also a solution of the inequality

A0u+B0v + . . . ≥ 0, (8)

then exist the positive coefficients λ1, λ2, . . . for which we have

A0 =
∑

λiAi, B0 =
∑

λiBi, . . .

In the second part: The basic method of the application, Farkas presents the
possibility of the application of the method of Lagrang’s multipliers in the case
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of the Fourier-principle, to eliminate the virtual displacements and to deduce
the so called Lagrange’s equation of the first kind of the mechanics.

Farkas indicates that in the first step is recommended to reduce the number
of the independent coordinates and virtual displacements, expressing the vari-
ations δp from the constraints (3) by using other independent virtual displace-
ments δq. The remaining equations and inequalities expressing the constraints
will be: ∑

Fδq = 0,
∑

Gδq = 0, . . . (9)
∑

Sδq ≥ 0,
∑

Tδq ≥ 0, . . . (10)

and the inequalities expressing the principle – deduced from (5) or (6) in case
of equilibrium, respectively the motion – will be:

∑
Qδq ≤ 0 ⇔ −

∑
Qδq ≥ 0. (11)

and ∑
(Q−mq̈) δq ≤ 0. (12)

Equations (9) will be expressed also by using inequalities, and the system of the
constraints will be:

∑
Fδq ≥ 0,

∑
Gδq ≥ 0, . . .

−
∑

Fδq ≥ 0, −
∑

Gδq ≥ 0, . . . (13)
∑

Sδq ≥ 0,
∑

Tδq ≥ 0, . . .

The mechanical principle of Fourier requires that any solutions δq of (13)
to be also solutions for (11). By using now the Farkas theorem results that
there exists some positive multipliers which allows us to express the coefficients
−Q as linear combinations of the coefficients F,G, . . . ,−F,−G, . . .and S, T . Let
denote these coefficients by ϕ′, ψ′, . . . , ϕ′′, ψ′′, . . . . and λ, µ. Corresponding to
the Farkas theorem

−Q =
(
ϕ′ − ϕ′′

)
F +

(
ψ′ − ψ′′

)
G+ . . .+ λS + µT + . . .

But the differences ϕ′ − ϕ′′, ψ′ − ψ′′,. . . may be positive or negative to. In
conclusion, the Fourier-principle is verified for coefficients Q with

Q+ ϕF + ψG+ . . .+ λS + µT + . . . = 0,

where ϕ,ψ, . . . are arbitrary real parameters, and λ, µ, . . . not negative arbitrary
parameters.

This first paper contains other two parts dedicated to Auxiliary methods
and to the Two mine types of the applications, where he presents Mechanical
equations of rigid bodies in contact and The general mechanical equations of not
rigid bodies.
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4 Further works about the Fourier-principle

In 1895 Farkas published a series of three papers dedicated to the Fourier-
principle under the title The history of the Fourier-principle, and some special
applications I-III [4]. In the first part – The history of the principle – he presents
the first formulation of the principle in the inequality form by Fourier (1798), the
apparition of the principle in the works of Gauss (1829). Important contributions
to the development of this principle were made by Ostogradsky (1834), who
expressed his astonishment on the fact that Lagrange, in the new edition of the
famous Mécanique analitique (1811) did not used this principle and established
the possibility of the application of the method of Lagrange’s multiplicators,
but only in the case, when tho number of restricting inequalities is less than the
number of virtual displacements.

Farkas mentions also the contemporary works of Rausenberger (Lehrbuch
der analytischen Mechanic, 1888) and Schell (Theorie der Bewegung und der
Kräfte) which contains short presentations of the principle.

In conclusion Farkas sadly write that the Fourier-principle is almost forgot-
ten, used only by a few authors in some particular cases, and the general case
was studied only by Ostogradsky. He underline also that the possibility of the
application of the general form was neglected.

In the next two parts of this paper he gives variate types of concrete ap-
plications, such as: the equilibrium of the mass point on a resisting surface,
the equilibrium of the mass point at the intersection of two resisting surfaces,
the equilibrium of the mass point at the intersection of three resisting surfaces,
...,the motion of the mass point with friction on a resisting surface. The last
part contains 6 examples of different cases of equilibrium and motion of the
rigid body with unilateral restrictions.

In the following years Farkas published other five papers dedicated mainly
to the algebraic foundation of the applications of the mechanical principle of
Fourier [5], [6], [7], [10], [11]. In these papers he these papers he gave more and
more elaborated and complete demonstration of his famous theorem.

The mechanical principle of Fourier is present also in the lectures given by
Farkas at the Franz Josef University in Cluj. We can see this reading Farkas’
handbooks multiplied for students: Theory of vectors and simple inequalities [8],
Foundations of mechanics [12], Analytical mechanics [13], containing profound,
detailed, accurate presentation of the mathematical basis of the Fourier prin-
ciple, the foundation of the analytical mechanics based on this principle and
variate concrete applications of this principle.

5 Conclusions

After this review of Farkas’ works dedicated to the mechanical principle of
Fourier, and taking account also on the appreciations made by Fényes [15],
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Filep [16], Prékopa [20] and [21], Martinás [19], Gábos [17] and Rapcsák [22],
we can conclude, that Gyula Farkas work dedicated to the mechanical princi-
ple of Fourier are very important especially for the further development of the
optimization theory, where the Farkas theorem is a central result.

Unfortunately at present days the mechanical principle of Fourier is almost
forgotten. Basic books dedicated to the foundations of the mechanics do not
use this general principle, they use only the particular case of the bilateral
constraints, which can be expressed only by equations. In the best case the
problem of unilateral constraints is only mentioned as in Gantmacher [18]: “The
motion of a system on which a unilateral constraint is imposed may be divided
into portions. . . , in certain portions a unilateral constraint is either replaced
by a bilateral constraint or is eliminated altogether. For this reason we shall
henceforth consider only bilateral constraints.”
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Abstract. Our Operations Research program to be presented has been developed for MEng
students of agriculture and agricultural economy (general course and specialization in informa-
tion technology), as well as for MSc students of business administration. The main topics are
the linear and nonlinear programming, including parametric, hyperbolic, integer, quadratic,
etc. methods. The lectures are followed by practical exercises held in computer labs.

We intended to give the students a tool that helps in the routine calculations but demon-
strates the applied algorithms transparently. However the available computer assisted teaching
tools either provide complete solutions, without the direct access of the students to the detailed
insight, or the actual methods are embedded in large mathematical packages like MathLab.

Considering this we concluded to develop a special software tool for above described field
of applications. In addition this package helps in the teaching of linear algebra, as well. The
basic capabilities of the tool cover matrix multiplication, matrix inverting, solving systems of
linear equations, as well as solution of complete linear, hyperbolic, parametric programming
problems. The elaboration of the software was supported by a regional grant.

The students use the package as an auxiliary toolkit, and, with the knowledge of the
problem to be solved, they are forced to decide about the subsequent steps of the Simplex
Method, while the procedure of solving is accelerated by the computer aided execution of the
individual routine calculations.
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At the University of Kaposvár we teach Operations Research for general
agricultural engineers and agricultural engineers specialized in economics. The
major topics in the first course are the followings:
1. Vector, linear space, (independence, basis transformation etc.)
2. Matrix, definition, operations, inverse,
3. Linear programming, simplex method, (graphical representation)
4. Special cases: degeneration, alternative optimum
5. Duality-sensitivity analysis
6. Hyperbolical goal functions
7. Binary, integer and mixed binary-integer programming
8. Parametrical programming
9. Transportation problem
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10. Project planning (CPM, PERT)
11. Simple business model of macro-economical connections
12. Modeling, simulation

We have also an advanced course for the students specialized in informatics
(while it can also be taken by the other students optionally, as well.) The topics
in this course are the followings:
1. Nonlinear programming: quadratic (KKT constraints)
2. Multiple goal functions: sequential optimization, weight functions, dimension-
less functions,
3. Efficient point: definition, iterative method for production
4. Dynamic programming,
5. Basics of two person zero sum game theory
6. Stochastic processes, Markov chains
7. Queuing theory
8. Bayesian decision models
9. Inventory control: deterministic models, stochastic models, discount models
10. Probability theory
11. Data mining (Bayesian information criteria)
12. Artificial Intelligence, search methods

In this course the advanced module of operational research is supplemented
with some other related fields (like artificial intelligence, data mining, etc.),
because the students do not learn these special topics and tools in other courses.

Considering that nowadays computer applications have keynote role, we in-
volve three generally available or simple software tools in the curriculum, as
follows:
– Excel Solver for solving models of linear programming,
– MS Project for project planning, and
– our own educational software for the linear and some nonlinear programming
methods to support the manual calculation carried out by the Simplex method)

In this paper mostly the use of the latest computer assisted education
methodology is introduced.

The Linv program can be applied for the solution of the following problems:
– matrix multiplication,
– determination of the inverse of a matrix,
– solution of linear equations,
– solution of linear programming problems,
– solution of multi-objective LP problems,
– solution of linear integer programming problems,
– solution of parametric optimization problems,
– solution of hyperbolic optimization problems.

The pedagogical philosophy of the applied methodology is that the computer
tool must not take the responsibility for the feasibility of data and for the
correct procedure of problem solving, only helps to execute the slow manual
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computational steps. Consequently the student can (and has to) concentrate
on the essential algorithm and on the procedure of problem solving, itself. The
investigated problem can be saved and reloaded at various stages, as well.

The main task window can be seen in Fig. 1.

Fig. 1. The main screen of the Linv program

The first option is the matrix multiplication, where the arrangement of the
matrices is the same as it used in teaching: The multiplicand matrix is on the
left side of the sheet, while the multiplier matrix is set at the upper side and the
result appears in the middle. The dimensions of the multiplicand and the number
of the columns of the multiplier can be specified in the dialog windows. We
can choose either decimal or fractional representation of numbers. The program
calculates immediately when the inlet data are specified, while the result matrix
shows the actual state of multiplication to the student (See Fig. 2).

Fig. 2. Matrix multiplication screen
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In the matrix inversion (see Fig. 3), we can select between the decimal
and fractional representation, too. After having filled the matrix (by the mouse
and/or tab key) the "pivot element" can be designated by double mouse click.
Then the calculation of a single step of the simplex method becomes possible.
Of course, the students have to know how to the inverse of a matrix is applied
in the simplex method. The program saves the consecutive states of the tables,
and it is possible to go backward and forward stepwise between the first and
the last steps.

Fig. 3. Matrix inverting screen of the program

The Linear Programming Module and the Linear Equation Solver works
with simplex method, as well. Having filled the trivial representation of the
problem, we can also designate by double mouse click the pivot element, and
then the program calculates the individual steps of the simplex method.

Fig. 4. Screen of the Linear Equation Solver Fig. 5. Screen of the LP Solver

The additional options in this task are the followings:
• Adding a "secondary goal function" row (z∗) if it is necessary;
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• Choosing dual representation and modifying the names of the variables
(ui, xi, z) for ui∗ , and −ui , or for anything else in the respective dialog box;

• We can hide the pivot elements column if it is needed. We used to hide it
in the two stage simplex method.

The non-linear problems are similarly represented as they used to be in the
manual calculation. To the solution of these problems the same simplex method
is used with the same options.

In the multi-objective LP problem the additional option of the program is the
consideration of the previously defined coefficients of the goal functions. While
solving parametric programming problems the computer program manipulates
also the additional rows for the constants and of the parameters (zc, zt). In the
hyperbolic case, new rows for the coefficients of the numerator and denomina-
tor functions are added. In the integer programming menu, new rows, Gomory
Cutting Planes can be added.

"G2"=SUM & MULTIPLICATION(B2:D2;B$8:D$8)

"G3"=SUM & MULTIPLICATION(B3:D3;B$8:D$8)

"G4"=SUM & MULTIPLICATION(B4:D4;B$8:D$8)

"G6"=SUM & MULTIPLICATION(B6:D6;B$8:D$8)

Fig. 6. Part of the brief manual of Excel Solver for LP problems
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Instead of the unnecessary manual, a detailed help supports the use of our
simple program.

The second computational tool used during the instructions is Excel Solver.
A brief booklet describing this tool is issued, just to help the less skilled students.
In what follows we show only some parts of this textbook. (Fig. 6.)

Excell Solver provides even sensitivity analysis besides the optimal solution.
Students are taught how to interpret it in an economic environment.

Another booklet is provided on solving transportation problems by Excel
Solver.

Third computational tool used by us for project planning is MS Project. We
connect the manual PERT methodology (Fig. 7.) with the MS Project repre-
sentation, and show the students the facilities of this problem (Critical Path
visualization, Tracking GANNT, Resource Sheet, Resource Graf, PERT Chart
etc.). (Fig. 8.)

Fig. 7. . Project Planning, PERT Chart View (Event Graph)

Fig. 8. Project Planning in MS Project (GANNT Chart view)
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The talks of the conference

August 23rd

Opening ceremony: L. Nagy, A. Prékopa, P. Blaga, S. Simon
A. Prékopa: Linear inequalities, duality theorem and their financial applica-
tions
G. Kassay, J. B. G. Frenk: Lagrangian duality and cone convexlike functions
C. Kao: Linear programming with interval parameters
R. I. Boţ, B. Hodrea, G. Wanka: A weaker regurality condition for subdif-
ferential calculus and Fenchel duality in infinite dimensional spaces
T. Illés: An elementary and constructive proof of the Farkas lemma
Zs. Csizmadia, T. Illés, M. Nagy, T. Terlaky: Linear complemenatrity
problems, suffucient matrices and EP theorem
B. Filiz, Zs. Csizmadia, T. Illés: A new anti-degeneracy method for linear
feasibility problems

August 24th

Z. Gábos, L. Nagy: The investigation of Gyula Farkas in the field of electro-
dynamics and relativity theory
R. I. Boţ, G. Wanka: Farkas-type results with conjugate functions
B. S. Mordukhovich: Generalized diferentiation in variational analyses with
applications in optimization
S. Komlósi: On quasiconvex farkas theorem
J. Kolumbán: Alternative inclusions
B. I. Boţ, S. M. Grad, G. Wanka: Conjugate duality for composed convex
optimization problems with a new contraint qualification
A. Kuba: Farkas’ lemma and its applications in discrete tomography
B. Bánhelyi, T. Csendes, L. Hatvani, B. Garay: A computer assisted
proof and location of chaos: the case of a forced damped pendulum equation
Gy. Bánkuti, E. Stettner: Computer assisted teaching of Operations Re-
search at the University of Kaposvár
J. Fülöp, S. Z. Németh: Global optimization techniques for stability analyses
of decision functions
R. Oláh-Gál: Gyula Farkas as a Bolyai researcher
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August 25th

F. Szenkovits: Gyula Farkas and the Fourier principle
K. Martinás: Thermodynamic achievements of Gyula Farkas
C. Zălinescu: On the maximisation of (not neccessarily) convex function on
convex sets
B. Vizvári: A little theory for the control of an assembly robot using Farkas
theorem
N. Popovici: Lexicographic quasiconvex vector optimization
Z. Horváth: Invariant cones and polyhedra for dynamical systems
B. Farkas, Sz. Gy. Révész: Potential theory and randezvous numbers
M. Mureşan: Controlability and relaxation in Banach spaces


